Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Cell Biology

Development Of Vasculature Patterns In A Mouse Model Of Supratentorial Ependymoma, Jackson Ayers Apr 2024

Development Of Vasculature Patterns In A Mouse Model Of Supratentorial Ependymoma, Jackson Ayers

Honors Scholar Theses

Supratentorial Ependymoma (ST-EPN) is a subtype of ependymoma, a primary solid tumor found throughout the nervous system. ST-EPN are most commonly caused by an oncogenic fusion between the zinc finger gene ZFTA and the RELA, and this distinct ependymoma subtype is readily modeled in mice by conditional expression of ZFTA-RELA in radial glial cells. ST-EPN are known to have a distinctive arrangement of tumor cells and vasculature forming pseudo-rosettes in which polarized tumor cells surround blood vessels within the tumors. It is not known how these pseudo-rosettes or the tumor vasculature form and develop in ST-EPN, so in this study …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

University Scholar Projects

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing to …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

Honors Scholar Theses

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast Dec 2019

Alzheimer's And Amyloid Beta: Amyloidogenicity And Tauopathy Via Dyshomeostatic Interactions Of Amyloid Beta, Jordan Tillinghast

Senior Honors Theses

This paper reviews functions of Amyloid-β (Aβ) in healthy individuals compared to the consequences of aberrant Aβ in Alzheimer’s disease (AD). As extraneuronal Aβ accumulation and plaque formation are characteristics of AD, it is reasonable to infer a pivotal role for Aβ in AD pathogenesis. Establishing progress of the disease as well as the mechanism of neurodegeneration from AD have proven difficult (Selkoe, 1994). This thesis provides evidence suggesting the pathogenesis of AD is due to dysfunctional neuronal processes involving Aβ’s synaptic malfunction, abnormal interaction with tau, and disruption of neuronal homeostasis. Significant evidence demonstrates that AD symptoms are partially …


Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow Jun 2019

Evolutionary Expansions And Neofunctionalization Of Ionotropic Glutamate Receptors In Cnidaria, Ellen G. Dow

FIU Electronic Theses and Dissertations

Reef ecosystems are composed of a variety of organisms, transient species of fish and invertebrates, microscopic bacteria and viruses, and structural organisms that build the living foundation, coral. Sessile cnidarians, corals and anemones, interpret dynamic environments of organisms and abiotic factors through a molecular interface. Recognition of foreign molecules occurs through innate immunity via receptors identifying conserved molecular patterns. Similarly, chemosensory receptors monitor the environment through specific ligands. Chemosensory receptors include ionotropic glutamate receptors (iGluRs), transmembrane ion channels involved in chemical sensing and neural signal transduction. Recently, an iGluR homolog was implicated in cnidarian immunological resistance to recurrent infections of …


Polyglutamine Repeat Proteins Disrupt Actin Structure In Drosophila Photoreceptors., Annie Vu, Tyler Humphries, Sean Vogel, Adam Haberman Dec 2018

Polyglutamine Repeat Proteins Disrupt Actin Structure In Drosophila Photoreceptors., Annie Vu, Tyler Humphries, Sean Vogel, Adam Haberman

Biology: Faculty Scholarship

Expansions of polygutamine-encoding stretches in several genes cause neurodegenerative disorders including Huntington's Disease and Spinocerebellar Ataxia type 3. Expression of the human disease alleles in Drosophila melanogaster neurons recapitulates cellular features of these disorders, and has therefore been used to model the cell biology of these diseases. Here, we show that polyglutamine disease alleles expressed in Drosophila photoreceptors disrupt actin structure at rhabdomeres, as other groups have shown they do in Drosophila and mammalian dendrites. We show this actin regulatory pathway works through the small G protein Rac and the actin nucleating protein Form3. We also find that Form3 has …


Reconstitution Of Gabaergic Postsynapses In Host Cells, Karthik Kanamalla Apr 2018

Reconstitution Of Gabaergic Postsynapses In Host Cells, Karthik Kanamalla

Honors Scholar Theses

Type A GABA receptors (GABAARs) can be found embedded in postsynaptic membranes or in a variety of extrasynaptic locations. Receptors with synaptic function are recruited to the postsynapse by submembranous scaffolds composed of gephyrin and collybistin (CB). This study was aimed at assessing whether the ability to interact with the scaffold differentiates synaptic from non-synaptic receptors. Using HEK293 cells as an expression system, and indirect immunofluorescence (IF), co-localization of extrasynaptic receptors α1β3δ and α4β3δ with the CB-gephyrin scaffold was assessed and compared with that of the synaptic receptor α1β3γ2. Results indicated that both extrasynaptic receptors were able to colocalize with …


Adaptor Protein 2 (Ap-2) Complex Is Essential For Functional Axogenesis In Hippocampal Neurons, Jae Won Kyung, In Ha Cho, Sukmook Lee, Woo Keun Song, Timothy A. Ryan, Michael B. Hoppa, Sung Hyun Kim Jan 2017

Adaptor Protein 2 (Ap-2) Complex Is Essential For Functional Axogenesis In Hippocampal Neurons, Jae Won Kyung, In Ha Cho, Sukmook Lee, Woo Keun Song, Timothy A. Ryan, Michael B. Hoppa, Sung Hyun Kim

Dartmouth Scholarship

The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in

concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a …


Gene Expression And Alzheimer's Disease: Evaluation Of Gene Expression Patterns In Brain And Blood For An Alzheimer's Disease Mouse Model, Amanda Hazy Jan 2015

Gene Expression And Alzheimer's Disease: Evaluation Of Gene Expression Patterns In Brain And Blood For An Alzheimer's Disease Mouse Model, Amanda Hazy

Senior Honors Theses

Previous studies have established a causative role for altered gene expression in development of Alzheimer’s disease (AD). These changes can be affected by methylation and miRNA regulation. In this study, expression of miRNA known to change methylation status in AD was assessed by qPCR. Genome-wide expression changes were determined by RNA-sequencing of mRNA from hippocampus and blood of control and AD mice. The qPCR data showed significantly increased expression of Mir 17 in AD, and sequencing data revealed 230 genes in hippocampus, 58 genes in blood, and 8 overlapping genes showing significant differential expression (p value ≤ 0.05). Expression data …


Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan Dec 2014

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan

FIU Electronic Theses and Dissertations

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.

In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA …


Structure-Function Analysis Of Nel, A Thrombospondin-1-Like Glycoprotein Involved In Neural Development And Functions, Masaru Nakamoto Jan 2012

Structure-Function Analysis Of Nel, A Thrombospondin-1-Like Glycoprotein Involved In Neural Development And Functions, Masaru Nakamoto

Biology Faculty Publications

Nel (neural epidermal growth factor (EGF)-like molecule) is a multimeric, multimodular extracellular glycoprotein with heparin-binding activity and structural similarities to thrombospondin-1. Nel is predominantly expressed in the nervous system and has been implicated in neuronal proliferation and differentiation, retinal axon guidance, synaptic functions, and spatial learning. The Nel protein contains an N-terminal thrombospondin-1 (TSP-N) domain, five cysteine-rich domains, and six EGF-like domains. However, little is known about the functions of specific domains of the Nel protein. In this study, we have performed structure-function analysis of Nel, by using a series of expression constructs for different regions of the Nel protein. …


Interspecies Comparison Of Αii-Spectrin Abundance Between Chinook Salmon And Steelhead, Brielle D. Kemis, Ann L. Miracle, Katie A. Wagner, Christa M. Woodley Aug 2011

Interspecies Comparison Of Αii-Spectrin Abundance Between Chinook Salmon And Steelhead, Brielle D. Kemis, Ann L. Miracle, Katie A. Wagner, Christa M. Woodley

STAR Program Research Presentations

Salmonids, such as Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss), are a staple economic, recreational, tribal, and environmental resource, yet many populations are unsustainable. This study was part of a broad scale effort to monitor the impact of downstream migration obstacles on juvenile salmonid health and survival, which is an essential step towards increasing Smolt-to-Adult Return ratios (SARs). The objective of this study was to determine if juvenile Chinook salmon and steelhead exhibit differing quantities of alphaII-Spectrin Breakdown Products (SBDPs) over two consecutive spring migration periods, indicative of neurogenesis rate and/or biological response to head …