Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell Biology

Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta Mar 2023

Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sensory receptors across the entire tongue are engaged during eating. However, the tongue has distinctive regions with taste (fungiform and circumvallate) and non-taste (filiform) organs that are composed of specialized epithelia, connective tissues, and innervation. The tissue regions and papillae are adapted in form and function for taste and somatosensation associated with eating. It follows that homeostasis and regeneration of distinctive papillae and taste buds with particular functional roles require tailored molecular pathways. Nonetheless, in the chemosensory field, generalizations are often made between mechanisms that regulate anterior tongue fungiform and posterior circumvallate taste papillae, without a clear distinction that highlights …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang Jul 2012

The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang

Life Sciences Faculty Research

Phosphotyrosine (pTyr) signaling, which plays a central role in cell-cell and cell-environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 representative …