Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell Biology

The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang Jul 2012

The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang

Life Sciences Faculty Research

Phosphotyrosine (pTyr) signaling, which plays a central role in cell-cell and cell-environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 representative …


Stationary Phase Mutagenesis In Bacillus Subtilisis Independent Of Genome Replication, Mark Upchurch, Holly Martin, Eduardo Robleto Apr 2011

Stationary Phase Mutagenesis In Bacillus Subtilisis Independent Of Genome Replication, Mark Upchurch, Holly Martin, Eduardo Robleto

Festival of Communities: UG Symposium (Posters)

Stationary phase mutagenesis is defined as cellular mechanisms that produce genetic diversity in cells experiencing conditions of stress. These processes are associated with many biological phenomena, including those that produce the formation of cancers in animal cells and other degenerative diseases. Also, these mechanisms are associated with the accumulation of beneficial mutations in bacteria, but follow stochastic processes and are controlled by genetic factors. The current models explaining the generation of stress-induced mutations are predicated on the formation of DNA replication intermediates that are formed during the repair of damaged DNA or during DNA replication and transcription encounters. Here we …


Stationary Phase Mutagenesis In Bacillus Subtilis: The Interaction Between Transcription And Error-Prone Replication In Conditions Of Stress, Mary Girard, Eduardo Robleto Aug 2009

Stationary Phase Mutagenesis In Bacillus Subtilis: The Interaction Between Transcription And Error-Prone Replication In Conditions Of Stress, Mary Girard, Eduardo Robleto

Undergraduate Research Opportunities Program (UROP)

While under conditions of stress, non-dividing cells may acquire beneficial mutations. This is referred to as stationary phase mutagenesis, or adaptive mutagenesis. Previous research has shown that actively transcribed genes and those under selective pressure are prone to mutations that confer escape from non-dividing conditions. Accordingly, strains lacking transcription factors have shown a drastically lower number of mutations that confer escape while under amino acid starvation than those observed in the wildtype background. Also, error-prone DNA polymerases are known to be active in cells under stress and it has been shown that strains lacking an error-prone DNA polymerase display reduced …


An Algorithm For Identifying Novel Targets Of Transcription Factor Families: Application To Hypoxia-Inducible Factor 1 Targets, Yue Jiang, Bojan Cukic, Donald A. Adjeroh, Heath D. Skinner, Jie Lin, Qingxi J. Shen, Bing-Hua Jiang Jan 2009

An Algorithm For Identifying Novel Targets Of Transcription Factor Families: Application To Hypoxia-Inducible Factor 1 Targets, Yue Jiang, Bojan Cukic, Donald A. Adjeroh, Heath D. Skinner, Jie Lin, Qingxi J. Shen, Bing-Hua Jiang

Electrical & Computer Engineering Faculty Research

Efficient and effective analysis of the growing genomic databases requires the development of adequate computational tools. We introduce a fast method based on the suffix tree data structure for predicting novel targets of hypoxia-inducible factor 1 (HIF-1) from huge genome databases. The suffix tree data structure has two powerful applications here: one is to extract unknown patterns from multiple strings/sequences in linear time; the other is to search multiple strings/sequences using multiple patterns in linear time. Using 15 known HIF-1 target gene sequences as a training set, we extracted 105 common patterns that all occur in the 15 training genes …