Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell Biology

Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu Nov 2012

Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu

Weiqiang Chen

Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques.


Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru Oct 2012

Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru

Doctoral Dissertations

This study describes the design, fabrication and applications of a novel thermoelectric microfluidic bio-sensor. The bio-sensor is used for real time detection of the L-glutamate (L-glu) dynamics and metabolism for brain tumor cells immobilized in a microfluidic device. The microfluidic device is fabricated using a polymer/glass laminating technique (Xurography). An antimony-bismuth thin-film thermopile (primary sensing element) is integrated to the microfluidic device. The brain tumor cells are immobilized over the thermopile covering measuring and reference junctions of the thermopile using a poly-l-lysine coating layer. L-glutamate oxidase (L-GLOD) is immobilized over the measuring junctions of the thermopile prior to the immobilization …


Electrospun Polycaprolactone Nanofiber Scaffolds For Tissue Engineering, Andreas Haukas May 2012

Electrospun Polycaprolactone Nanofiber Scaffolds For Tissue Engineering, Andreas Haukas

Graduate Theses and Dissertations

Stem cell and tissue engineering offer us with a unique opportunity to research and develop new therapies for treating various diseases that are otherwise incurable using traditional medicines. However, development of these new therapies replies upon the establishment of in vitro cell culture and differentiation systems that mimic in vivo microenvironments required for cell-cell and cell-ECM interaction. The development of these cell culture systems depends upon the identification of appropriate biomaterials and cell sources. Biomaterials should be carefully selected and fabricated into scaffolds for supporting cell growth and differentiation. In this study, we explored the fabrication of 3D electrospun nanofiber …


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu Apr 2012

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type …


Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang Apr 2012

Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang

Electrical & Computer Engineering Theses & Dissertations

Nanosecond pulsed electric field induced biological effects have been a focus of research interests since the new millennium. Promising biomedical applications, e.g. tumor treatment and wound healing, are emerging based on this principle. Although the exact mechanisms behind the nanosecond pulse-cell interactions are not completely understood yet, it is generally believed that charging along the cell membranes (including intracellular membranes) and formation of membrane pores trigger subsequent biological responses, and the number and quality of pores are responsible for the cell fate. The immediate charging response of a biological cell to a nanosecond pulsed electric field exposure relies on the …


A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin Jan 2012

A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin

Nursing Faculty Publications

Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, …