Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Cell Biology

Neuroinflammation In Alzheimer’S Disease Mouse Brain Following Repetitive Mild Traumatic Brain Injury, Lujain Almuhanna Jun 2024

Neuroinflammation In Alzheimer’S Disease Mouse Brain Following Repetitive Mild Traumatic Brain Injury, Lujain Almuhanna

Electronic Theses and Dissertations

Traumatic brain injuries (TBIs) are a common form of head injury, with mild TBIs (mTBIs) making up 75-90% of the TBI severity scale. It’s been suggested that repetitive mild TBIs (rmTBIs) may enhance effects of Alzheimer’s Disease (AD). With dementia linking TBI and AD together, we investigated the memory hub of the brain - the hippocampus. Astrocytes and microglia are two glial cells that respond to neuroinflammation and therefore imaged in hippocampal regions of the 3xTg-AD mouse brain. We hypothesized that AD brain pathology (i.e., neuroinflammation) would be accelerated in 3xTg-AD mice following rmTBIs early in life. Analyses revealed that …


Identification Of The Functional Domain Of The Dense Core Vesicle Biogenesis Factor Hid-1, Blake H. Hummer, Theodore Carter, Breanna L. Sellers, Jenna D. Triplett, Cedric S. Asensio Sep 2023

Identification Of The Functional Domain Of The Dense Core Vesicle Biogenesis Factor Hid-1, Blake H. Hummer, Theodore Carter, Breanna L. Sellers, Jenna D. Triplett, Cedric S. Asensio

Biological Sciences: Faculty Scholarship

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, …


The Role Of Ehd2 In Endothelial Cells, Rachael Judson Jan 2022

The Role Of Ehd2 In Endothelial Cells, Rachael Judson

Electronic Theses and Dissertations

The role of EHD2 in terms of Cav1 interaction had not been previously characterized and was the main goal of this research. Cav1 has been shown to lead to the ubiquitination of Rac1. Because of this, the role of EHD2 in Rac1 regulation was investigated. An increase in long-term migration in endothelial cells was observed and suggested that EHD2 impacts the RhoA pathway instead of the Rac1 pathway. This lead to the hypothesis that EHD2 controls a part of the RhoA pathway. This hypothesis is supported by the loss of filamentous actin and an increase in serrated junctions in cells …


Development Of Endoplasmic Reticulum Targeted Probes And Red Fluorescent Probes For Detecting Zinc, Drew Maslar Jan 2021

Development Of Endoplasmic Reticulum Targeted Probes And Red Fluorescent Probes For Detecting Zinc, Drew Maslar

Electronic Theses and Dissertations

Zinc (Zn2+) is the second most abundant transition metal in the body and is important in various biological functions. Fluorescent sensors based on circularly permuted fluorescent proteins (cpFPs) have been previously made to detect labile, or unbound, Zn2+ within the cytoplasm of cells. These sensors have proven invaluable for studying Zn2+, however, these sensors are limited to their use in the cytoplasm and by the fact that only green cpFP have been utilized to create fluorescent Zn2+ sensors. In this thesis, we use a combination of peptide targeting sequences, site-directed mutagenesis, and rational design …


Cellular And Organismal Ramifications Of De Novo Purine Synthesis Dysregulation, Randall Craig Mazzarino Jan 2020

Cellular And Organismal Ramifications Of De Novo Purine Synthesis Dysregulation, Randall Craig Mazzarino

Electronic Theses and Dissertations

Purines are a class of nitrogenous bases and are essential small molecules to life. Purines are used within the cell as genetic information carriers, energy currency, signaling molecules, and cofactors for multiple processes. They are formed through de novo and salvage pathways found in cells across the phylogenetic tree. The substrates of enzymes within de novo purine synthesis are known to influence other processes within the cell, such as energy homeostasis. In humans, de novo purine synthesis disorders are rare, with around 100 people identified. These patients exhibit a range of phenotypes, with varying degrees of mental retardation, seizure activity, …


Actin Regulation And Furrow Dynamics During Early Drosophila Embryogenesis, Yi Xie Jan 2020

Actin Regulation And Furrow Dynamics During Early Drosophila Embryogenesis, Yi Xie

Electronic Theses and Dissertations

Drosophila embryogenesis starts with a single nucleus undergo 13 rounds of nuclear divisions called syncytial cycles. Staring at cycle 10 when nuclei migrate to the surface of the embryo, massive and dynamic cortical actin structures and cleavage furrow formations occur. How actin regulators coordinate into an organized network directing three-dimension actin structures in the developing organisms is an unsolved question. Here, I present an in-depth characterization of actin cap dynamics: the actin caps go through expansion, stabilization, elongation and fragmentation phases in each cycle. Arp2/3 is the major contributor to actin cap formation. The functions of 7 different actin and …


Regulation Of Synaptogenesis By The Mirna Pathway And Fmr/P Bodies, Jacqueline Rochelle Furlong Jan 2015

Regulation Of Synaptogenesis By The Mirna Pathway And Fmr/P Bodies, Jacqueline Rochelle Furlong

Electronic Theses and Dissertations

Post-transcriptional regulation of mRNA is facilitated by different mechanisms, such as microRNA (miRNA) induced gene silencing or fragile X mental retardation protein (FMRP) mediated repression either independent of or acting through cytoplasmic RNA Processing bodies (P bodies). DPTP99A, Lar, and Wg have known functions during synaptogenesis and may be targets of miR-8. Here, we provide evidence that miR-8 regulates DPTP99A in vitro. Non-endogenous miR-8 expressed using an UAS driver regulates Lar. Endogenous miR-8 may regulate DPTP99A in vivo. Here we show that FMRP is capable of colocalizing with the P body components: DCP1, HPat, and Me31B, but not …