Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

2019

Publications and Research

Articles 1 - 2 of 2

Full-Text Articles in Cell Biology

Inhibition Of Mitochondrial Permeability Transition By Deletion Of The Ant Family And Cypd, Jason Karch, Michael J. Bround, Hadi Khalil, Michelle A. Sargent, Nadina Latchman, Naohiro Terada, Pablo M. Peixoto, Jeffery D. Molkentin Aug 2019

Inhibition Of Mitochondrial Permeability Transition By Deletion Of The Ant Family And Cypd, Jason Karch, Michael J. Bround, Hadi Khalil, Michelle A. Sargent, Nadina Latchman, Naohiro Terada, Pablo M. Peixoto, Jeffery D. Molkentin

Publications and Research

The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin …


Deletion Of Mgr2p Affects The Gating Behavior Of The Tim23 Complex, Oygul Mirzalieva, Shinhye Jeon, Kevin Damri, Ruth Hartke, Layla Drwesh, Keren Demishtein-Zohary, Abdussalam Azem, Cory D. Dunn, Pablo M. Peixoto Jan 2019

Deletion Of Mgr2p Affects The Gating Behavior Of The Tim23 Complex, Oygul Mirzalieva, Shinhye Jeon, Kevin Damri, Ruth Hartke, Layla Drwesh, Keren Demishtein-Zohary, Abdussalam Azem, Cory D. Dunn, Pablo M. Peixoto

Publications and Research

The TIM23 complex is a hub for translocation of preproteins into or across the mitochondrial inner membrane. This dual sorting mechanism is currently being investigated, and in yeast appears to be regulated by a recently discovered subunit, the Mgr2 protein. Deletion of Mgr2p has been found to delay protein translocation into the matrix and accumulation in the inner membrane. This result and other findings suggested that Mgr2p controls the lateral release of inner membrane proteins harboring a stop-transfer signal that follows an N-terminal amino acid signal. However, the mechanism of lateral release is unknown. Here, we used patch clamp electrophysiology …