Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Theses/Dissertations

2022

Institution
Keyword
Publication

Articles 1 - 30 of 76

Full-Text Articles in Cell Biology

Novel Mechanisms Of Protein Kinase C Α Regulation And Function, Xinyue Li Dec 2022

Novel Mechanisms Of Protein Kinase C Α Regulation And Function, Xinyue Li

Theses & Dissertations

Protein kinase Cα (PKCα) is a member of the PKC family of serine/threonine kinases, which have been implicated in regulation of many cellular processes, including cell proliferation, differentiation, survival, and transformation. A large body of evidence from the Black laboratory and others support an anti-proliferative function of PKCα in normal epithelial tissues, including the intestinal mucosa and endometrial epithelium. PKCα is also tumor suppressive in epithelial cancers, such as colorectal cancer (CRC) and endometrial cancer (EC). However, a major obstacle to harnessing the tumor suppressive functions of PKCα to benefit patients is the widespread loss of PKCα expression in tumors. …


A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd Dec 2022

A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce a truly staggering number of diverse extracellular signals including chemical messengers, physical force, and even photons into specific cellular responses through their coupling to heterotrimeric G proteins. G proteins amplify the originating signal through their binding to downstream effectors, activating a complex network of overlapping responses that allow the cell to respond perfectly to that specific stimulus. It is critical to the cell that this process is carried out faithfully in order to respond to the myriad environmental cues and avoid injury, exhaustion, and death for the individual cell or the development of pathology if …


Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown Dec 2022

Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown

Seton Hall University Dissertations and Theses (ETDs)

1,1-bis(3’idolyl)-1(aryl)methane compounds (BIM compounds) have been shown to have anti-cancer properties in colon cancer, bladder cancer, and leukemia cells. The purpose of this work was to determine if BIM compounds could be an effective treatment of glioblastoma multiforme. Sulforhodamine B (SRB) assays showed that 20µM of the BIM compounds could inhibit cellular proliferation of the T98G glioblastoma multiforme cell line over 72 hours. Then immunoblotting was used to analyze the molecular pathway induced by BIM compounds. An increase in the expression of both BAX and cleaved caspase 3 suggest BIM compounds activate programmed cell death, or apoptosis in glioblastoma cells. …


Investigations Into Prg-2 And Its Involvement In Developing Gallus Gallus Retinal Neurons, Jeffrey Parham Dec 2022

Investigations Into Prg-2 And Its Involvement In Developing Gallus Gallus Retinal Neurons, Jeffrey Parham

Graduate Theses

I am interested in the development of the nervous system, especially since during development nerves grow and extend, but in adults, they do not regenerate if damaged. We are specifically interested in the molecules that guide nerves to the correct target during their development. Lysophosphatidic acid (LPA) is a bioactive molecule that has been shown to play a role in neural development. LPA, through repeated studies, has been shown to stop neurons from growing by causing a physical change in a neuron’s growth cone (a structure used for navigation and growth). Recently, a novel set of genes, called PRGs, have …


The Role Of Fatty Acid Metabolism In The Pathogenesis Of Trypanosoma Brucei, Nava Poudyal Dec 2022

The Role Of Fatty Acid Metabolism In The Pathogenesis Of Trypanosoma Brucei, Nava Poudyal

All Dissertations

Trypanosoma brucei is the protozoan parasite that causes African Sleeping Sickness in humans and nagana, a wasting disease in cattle. T. brucei completes its life cycle in two hosts, mammals and the tsetse fly insect vector. Due to the geographical restriction of the tsetse fly, the disease is endemic in sub-Saharan Africa. Both the insect and mammalian forms of the parasite need fatty acids to anchor their surface proteins. We worked on three projects on fatty acid metabolism and its role in immune evasion strategies of T. brucei. First, we assessed the role of T. brucei surface proteins in …


Exploring The Anticancer Mechanism Of Thienopyrazole Derivative Tpz-1 In Acute Myeloid Leukemia, Jessica Dyanne Hess Dec 2022

Exploring The Anticancer Mechanism Of Thienopyrazole Derivative Tpz-1 In Acute Myeloid Leukemia, Jessica Dyanne Hess

Open Access Theses & Dissertations

Anticancer drug discovery is a time and resource-consuming process for which exceedingly reliable and efficient modern approaches are needed. Phenotypic drug screenings can generate highly potent and innovative drug candidates; however, deconvolution of the drugâ??s target often presents significant barriers to drug development. To overcome this hurdle, we have originally combined in vitro and in silico analyses to uncover the molecular mechanism(s) driving the anticancer activity of the uniquely structured small molecule drug candidate, Tpz-1. Our study revealed that Tpz-1 is a multitargeted agent which induces the programmed death of HL-60 acute myeloid leukemia cells primarily through disruption of microtubule …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray Dec 2022

Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray

Graduate Theses and Dissertations

Life is remarkable in how resilient it can be. Many organism, classified as ex- tremophiles, can not only survive in extreme environments, but they can thrive in them. In the search for extraterrestrial life, the best candidates to harbor life exist with some kind of extreme condition. Europa, for example, is a favorite for the possibility of accommodating life as we know it within our solar system. Thought there is believed to be a liquid ocean under its icy surface, this habitat would be under immense pressures and high salinity. To best know where to look for extraterrestrial life, it …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Understanding SjöGren's Syndrome As A Systemic Autoimmune Disorder, Gaietchyne Chery Dec 2022

Understanding SjöGren's Syndrome As A Systemic Autoimmune Disorder, Gaietchyne Chery

Legacy Theses & Dissertations (2009 - 2024)

Sjögren’s syndrome is an autoimmune condition characterized by a dysfunction in the lachrymal and salivary glands which results in dry eyes and dry mouth. Since its first description in 1892, the disease is one of the most common autoimmune diseases after lupus erythematosus and rheumatoid arthritis in the United States. Despite its high prevalence in the general population, Sjögren’s syndrome remains hard to diagnose due to the wide range of symptoms associated with the disease that is also shared by other conditions. Furthermore, the mechanisms behind the pathogenesis are not properly understood even though multiple factors have been proposed to …


Chromatin Regulation By Rb-Interacting Proteins In Cellular Immune Functions, Seung June Kim Nov 2022

Chromatin Regulation By Rb-Interacting Proteins In Cellular Immune Functions, Seung June Kim

Electronic Thesis and Dissertation Repository

The retinoblastoma protein (RB) is historically known for its function in cell cycle control. However, mice carrying targeted Rb1 mutations have revealed that RB serves various non-cell cycle control roles. Notably, RB acts as a scaffold that recruits chromatin regulatory proteins, condensin II and enhancer of zeste homolog 2 (EZH2). These complexes protect the genome integrity through maintaining proper chromosome condensation, long range contacts, and transcriptionally repressive histone modification. This thesis explores the mechanistic links that regulate such RB-condensin II complex or that are leveraged upon pharmacological inhibition of the RB-EZH2 complex. First, I identified potential phosphorylation sites in the …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


Regulation Of Tissue Mechanics And Adherens Junctions By Small Gtpase Rhoa During Drosophila Embryogenesis, Hanqing Guo Nov 2022

Regulation Of Tissue Mechanics And Adherens Junctions By Small Gtpase Rhoa During Drosophila Embryogenesis, Hanqing Guo

Dartmouth College Ph.D Dissertations

Actomyosin contractility plays an important role at both the cell and tissue level during developments. In this study, we developed an optogenetic tool that can acutely inhibit actomyosin contractility by targeting its main activator Rho1. This optogenetic tool can achieve myosin inhibition within one minute and thus enable further dissection of actomyosin function in development. In my first two projects, I used Drosophila mesoderm invagination (also known as ventral furrow formation) as a model to study epithelial folding, a fundamental mechanism for constructing complex 3D tissues. Apical constriction mediated by actomyosin contractility is a common mechanism for epithelial folding. However, …


Principles Of Aaa+ Proteases, Samar Mahmoud Oct 2022

Principles Of Aaa+ Proteases, Samar Mahmoud

Doctoral Dissertations

ATPases associated with diverse cellular activities (AAA+) proteases in bacteria help maintain protein homeostasis by degrading misfolded and regulatory proteins. While a handful of protein targets for these proteases have been identified in Caulobacter crescentus and other organisms, more research is needed to elucidate mechanisms that govern substrate specificity. In the second chapter of this thesis, I will elaborate on how AAA+ substrate specificity is less rigid than previous work has suggested and how limiting ATP or mutations can alter substrate preferences of the ClpXP protease. In the third chapter, I will highlight our efforts to use a quantitative proteomics …


Characterizing The Multifaceted Roles Of The Proteasomal Deubiquitinase Uch37 In Proteostasis, Heather A. Bisbee Oct 2022

Characterizing The Multifaceted Roles Of The Proteasomal Deubiquitinase Uch37 In Proteostasis, Heather A. Bisbee

Doctoral Dissertations

Cellular protein pools are maintained through the biological processes of synthesis, degradation and quality control. As the dysregulation of these processes has been implicated in diseases such as neurodegeneration and cancer, understanding their functions is critical for drug development. Modification of proteins with ubiquitin may direct them to the proteasome, a large cellular protease complex, for degradation. Yet, the proteasome contains three deubiquitinating enzymes (DUBs) which remove ubiquitin from proteins, potentially altering their fate. As each DUB recognizes specific ubiquitin linkages and architectures, their activity may regulate how the proteasome handles substrates in dynamic cellular contexts. In this work, we …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Mechanisms And Roles Of Dynamic Actin Assembly Around Dysfunctional Mitochondria, Tak Shun Fung Aug 2022

Mechanisms And Roles Of Dynamic Actin Assembly Around Dysfunctional Mitochondria, Tak Shun Fung

Dartmouth College Ph.D Dissertations

Possessing the ability to efficiently generate ATP required to sustain cellular functions, mitochondria are often considered the ‘powerhouses of the cell’. However, our understanding of mitochondria in cell biology was further expanded when we recognized that communication between this unique organelle and the rest of the cell regulates cellular bioenergetics, metabolism and signaling processes such as mitophagy and apoptosis. Here, I investigate signaling between mitochondria and the actin cytoskeleton, and how this signaling regulates mitochondrial dynamics and cellular function. Specifically, I find that, upon mitochondrial dysfunction, actin polymerizes rapidly around the dysfunctional organelle, which we term ‘acute damage-induced actin’ (ADA). …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel Aug 2022

Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel

All Dissertations

Entamoeba histolytica is a water- and food-borne intestinal protozoan parasite that causes amoebiasis and liver abscess and is responsible for symptomatic disease in approximately 100 million people each year leading to ~ 100,000 deaths. The most common disease transmission follows the oral-fecal route, but it can also be transmitted by mechanical vectors such as animals carrying the amoeba from contaminated sources to water systems. In rare cases, disease transmission has been recorded in some patients in which men-to-men sexual practices were preferred.

The life cycle of E. histolytica starts through ingestion of infectious cysts, which are non-dividing, quadri-nucleated structures surrounded …


Determination Of The Functional Role Of Rab-Ggt In Physcomitrium Patens., Hyun Jin Jung Aug 2022

Determination Of The Functional Role Of Rab-Ggt In Physcomitrium Patens., Hyun Jin Jung

Electronic Theses and Dissertations

Protein prenylation, a common lipid post-translational modification, is required for growth and development in eukaryotes. Rab geranylgeranylation involves the addition of one or two 20-carbon geranylgeranyl moieties to Rab-GTPase target proteins, which regulate intracellular vesicle trafficking. The reaction is carried out by heterodimeric Rab geranylgeranyltransferase (Rab-GGT), which is composed of two associated α- and β-subunits, with the assistance of an additional protein called Rab escort protein (REP). Loss of function of the Rab-GGT α subunit RGTA1 has not been reported in any plant. While knockout of either of the two β subunits RGTB1 or RGTB2 results in …


The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio Aug 2022

The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio

Graduate School of Biomedical Sciences Theses and Dissertations

Ribosomes are responsible for translating every protein in the cell and are essential in all domains of life. Ribosome biosynthesis (RB) takes place in the nucleolus and is an intricate hierarchical process involving over 200 factors, including ribosomal proteins, ribosomal RNA (rRNA), and trans-acting ribosome biogenesis factors (RBFs). Inhibiting RB can disrupt nucleolar integrity, causing ribosomal- and nucleolar-factors to delocalize. This can stabilize the transcription factor p53, which is normally degraded rapidly, ultimately causing cell cycle arrest or apoptosis, through a mechanism termed the nucleolar stress response (NSR). This thesis explores the effects of inhibiting RB post rRNA transcription and …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Examining The Expression Patterns Of Desulfotalea Psychrophila Dsrab Operon And Pit At Subfreezing Temperatures And Different Concentrations Of Sulfate Salts As A Model For Mars And Icy Worlds Survival And Colonization, Sergio Luis Mosquera Mora Aug 2022

Examining The Expression Patterns Of Desulfotalea Psychrophila Dsrab Operon And Pit At Subfreezing Temperatures And Different Concentrations Of Sulfate Salts As A Model For Mars And Icy Worlds Survival And Colonization, Sergio Luis Mosquera Mora

Graduate Theses and Dissertations

Since ancient times, Humanity has been fascinated with the idea of what lies beyond the borders of our planet. Fortunately, the combined efforts of many nations have made it possible to send unmanned spacecraft to orbit planets located close to Earth. These missions have the principal goal to collect data that could help us understand the basic environmental conditions that persist on those planets, or for evidence of past or present life. Equally important, landers and rovers have been successfully deployed to start the in-situ exploration of many planets of the Solar System. Among them, Mars has been extensively studied …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson Aug 2022

Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson

Chemistry & Biochemistry Undergraduate Honors Theses

Known to cause gas gangrene, Hathewaya histolytica secretes two sister collagenases, collagenase G (Col G) and collagenase H (Col H), to degrade the triple helical structure of collagen to further infection in a host. Individual domains of Col H have been crystalized in previous studies, but methods in x-ray crystallization of full-length Col H have been unsuccessful. Using Small Angle X-Ray Scattering (SAXS) data, atomistic modeling was used to generate multiple conformations of Col H while accounting for flexibility between domains. Full-length Col H was found to adopt a two-state conformational model exhibiting a majority compact and a minority elongated …


Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes Aug 2022

Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes

All Dissertations

Cryptococcus neoformans is an opportunistic fungal pathogen, infecting mainly immunocompromised individuals. As the main cause of cryptococcosis, it is responsible for over 180,000 deaths every year. As an environmental yeast, it has unique adaptations that allow it to proliferate in the human host. Among these adaptations its capacity to transition to an extreme phenotype known as Titan cells is of special interest to researchers. With sizes above 10 um and able to reach 70 um or more in cell size. This size is accompanied with a large vacuole, larger polysaccharide capsule, and an increased resistance to fluconazole (FLC). FLC is …


Parallel Networks That Govern The Transcriptional Response To Stress, Serene Anne Durham Aug 2022

Parallel Networks That Govern The Transcriptional Response To Stress, Serene Anne Durham

Legacy Theses & Dissertations (2009 - 2024)

The transcription factor, p53, plays a pivotal role in the oversight of many stimulus-dependent pathways. Its ability to respond to a wide variety of cellular stress stimuli by activating a broad range of target genes has led it to be characterized as a stress-dependent transcription factor. Our research focuses on deconvoluting the varied transcriptional response to distinct stress signals in an attempt to define the regulatory strategies leading to gene activation after cell stress. We have found that distinct stress response networks, some of which are p53-independent, are converging at activation of a common set of target genes. Our data …


A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin Aug 2022

A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin

Electronic Theses and Dissertations

Computational modeling of metabolic reactions and cellular systems is evolving as a tool for quantitative prediction of metabolic parameters and reaction pathway analysis. In this work, the basics of computational cell biology are presented as well as a summary of physical processes within the cell, and the algorithmic methods used to find time dependent solutions. Protein-protein and enzyme-substrate interactions are mathematically represented via mass action kinetics to construct sets of linear differential equations that describe reaction rates and formation of protein complexes. Using mass action methods, examples of reaction networks and their solutions are presented within the Virtual Cell simulation …


Characterization Of The Responses To Chronic Stress In Caenorhabditis Elegans, Amy Laura Knight Jul 2022

Characterization Of The Responses To Chronic Stress In Caenorhabditis Elegans, Amy Laura Knight

Theses and Dissertations

Exposure to chronic temperature stress influences organismal phenotypes that are important for human health, agriculture, and ecology. In this thesis, the model organism Caenorhabditis elegans was used to study the effects of temperature stress on reproduction and lifespan. It was found that worms demonstrated a rapid shut down in egg-laying between 18-24 hours of exposure to 28°C. Despite this reproductive defect, the overall lifespan of worms was unaffected. At the molecular level, heat shock factor 1 (HSF-1), a regulator of the protective molecular pathway known as the heat shock response (HSR), was identified as important for progeny production during heat …