Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell Biology

Subcellular Metabolite And Lipid Analysis Of Xenopus Laevis Eggs By Laesi Mass Spectrometry, Bindesh Shrestha, Prabhakar Sripadi, Brent R. Reschke, Holly D. Henderson, Matthew J. Powell, Sally Ann Moody, Akos Vertes Dec 2014

Subcellular Metabolite And Lipid Analysis Of Xenopus Laevis Eggs By Laesi Mass Spectrometry, Bindesh Shrestha, Prabhakar Sripadi, Brent R. Reschke, Holly D. Henderson, Matthew J. Powell, Sally Ann Moody, Akos Vertes

Anatomy and Regenerative Biology Faculty Publications

Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino …


Structure-Based Network Analysis Of Activation Mechanisms In The Erbb Family Of Receptor Tyrosine Kinases: The Regulatory Spine Residues Are Global Mediators Of Structural Stability And Allosteric Interactions, Kevin A. James, Gennady M. Verkhivker Nov 2014

Structure-Based Network Analysis Of Activation Mechanisms In The Erbb Family Of Receptor Tyrosine Kinases: The Regulatory Spine Residues Are Global Mediators Of Structural Stability And Allosteric Interactions, Kevin A. James, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced ‘‘superacceptor’’ activity …


Regulated Splicing Of The Alpha6 Integrin Cytoplasmic Domain Determines The Fate Of Breast Cancer Stem Cells, Hira Lal Goel, Tatiana Gritsko, Bryan Pursell, Cheng Chang, Leonard D. Shultz, Dale L. Greiner, Jens Henrik Norum, Rune Toftgard, Leslie M. Shaw, Arthur M. Mercurio Nov 2014

Regulated Splicing Of The Alpha6 Integrin Cytoplasmic Domain Determines The Fate Of Breast Cancer Stem Cells, Hira Lal Goel, Tatiana Gritsko, Bryan Pursell, Cheng Chang, Leonard D. Shultz, Dale L. Greiner, Jens Henrik Norum, Rune Toftgard, Leslie M. Shaw, Arthur M. Mercurio

Arthur M. Mercurio

Although the alpha6beta1 integrin has been implicated in the function of breast and other cancer stem cells (CSCs), little is known about its regulation and relationship to mechanisms involved in the genesis of CSCs. We report that a CD44(high)/CD24(low) population, enriched for CSCs, is comprised of distinct epithelial and mesenchymal populations that differ in expression of the two alpha6 cytoplasmic domain splice variants: alpha6A and alpha6B. alpha6Bbeta1 expression defines the mesenchymal population and is necessary for CSC function, a function that cannot be executed by alpha6A integrins. The generation of alpha6Bbeta1 is tightly controlled and occurs as a consequence of …


Neural Transcription Factors: From Embryos To Neural Stem Cells, Hyun-Kyung Lee, Hyun-Shik Lee, Sally Ann Moody Oct 2014

Neural Transcription Factors: From Embryos To Neural Stem Cells, Hyun-Kyung Lee, Hyun-Shik Lee, Sally Ann Moody

Anatomy and Regenerative Biology Faculty Publications

The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely …


A Central Role For Vimentin In Regulating Repair Function During Healing Of The Lens Epithelium, A. S. Menko, B. M. Bleaken, A. A. Libowitz, L. Zhang, Mary Ann Stepp, J. L. Walker Mar 2014

A Central Role For Vimentin In Regulating Repair Function During Healing Of The Lens Epithelium, A. S. Menko, B. M. Bleaken, A. A. Libowitz, L. Zhang, Mary Ann Stepp, J. L. Walker

Anatomy and Regenerative Biology Faculty Publications

Mock cataract surgery provides a unique ex vivo model for studying wound repair in a clinically relevant setting. Here wound healing involves a classical collective migration of the lens epithelium, directed at the leading edge by an innate mesenchymal subpopulation of vimentin-rich repair cells. We report that vimentin is essential to the function of repair cells as the directors of the wound-healing process. Vimentin and not actin filaments are the predominant cytoskeletal elements in the lamellipodial extensions of the repair cells at the wound edge. These vimentin filaments link to paxillin-containing focal adhesions at the lamellipodial tips. Microtubules are involved …