Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

2020

Institution
Keyword
Publication
Publication Type

Articles 31 - 41 of 41

Full-Text Articles in Cell and Developmental Biology

Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon Feb 2020

Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon

Electronic Thesis and Dissertation Repository

Over the lifetime of an organism, neurons must establish, remodel, and maintain precise connections in order to form neural circuits that are required for proper nervous system functioning. Disruptions in these processes can lead to neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder. Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex have been implicated in ID, yet the role of this complex in neurons is poorly understood. In this project, I established cell-type specific methods to examine the effect of SWI/SNF subunit knockdowns on gene transcription and chromatin structure in the memory-forming neurons of …


Essential Role Of The Crk Family-Dosage In Digeorge-Like Anomaly And Metabolic Homeostasis, Akira Imamoto, Sewon Ki, Leiming Li, Kazunari Iwamoto, Venkat Maruthamuthu, John Devany, Ocean Lu, Suxiang Zhang, Takuji Yamada, Akiyoshi Hirayama, Shinji Fukuda, Yutaka Suzuki, Mariko Okada Feb 2020

Essential Role Of The Crk Family-Dosage In Digeorge-Like Anomaly And Metabolic Homeostasis, Akira Imamoto, Sewon Ki, Leiming Li, Kazunari Iwamoto, Venkat Maruthamuthu, John Devany, Ocean Lu, Suxiang Zhang, Takuji Yamada, Akiyoshi Hirayama, Shinji Fukuda, Yutaka Suzuki, Mariko Okada

Mechanical & Aerospace Engineering Faculty Publications

CRK and CRKL (CRK-like) encode adapter proteins with similar biochemical properties. Here, we show that a 50% reduction of the family-combined dosage generates developmental defects, including aspects of DiGeorge/del22q11 syndrome in mice. Like the mouse homologs of two 22q11.21 genes CRKL and TBX1, Crk and Tbx1 also genetically interact, thus suggesting that pathways shared by the three genes participate in organogenesis affected in the syndrome. We also show that Crk and Crkl are required during mesoderm development, and Crk/Crkl deficiency results in small cell size and abnormal mesenchyme behavior in primary embryonic fibroblasts. Our systems-wide analyses reveal impaired …


Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott Jan 2020

Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

The recent emergence of antibiotic resistance bacterial strains presents a significant challenge and threat to human healthcare. While new methods of treatment such as bacteriophage therapy and combinations of existing antibiotics are being researched, the human population is in dire need of new antibiotics to replace those that are ineffective. This research addresses this need by identifying antibiotic producing bacteria in a soil sample from Davenport, IA. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from soil. Microbiology lab techniques and 16S …


Investigation Of The Phenotypic Effect Of Mutating A Highly-Conserved Cysteine Residue In The Rna Polymerase Beta Prime Subunit Of E. Coli Rna Polymerase, Meg Dillingham Jan 2020

Investigation Of The Phenotypic Effect Of Mutating A Highly-Conserved Cysteine Residue In The Rna Polymerase Beta Prime Subunit Of E. Coli Rna Polymerase, Meg Dillingham

Mahurin Honors College Capstone Experience/Thesis Projects

All bacteria contain a multi-subunit RNA polymerase (RNAPs) that is essential for gene expression. Because of the centrality of these enzymes in cellular life, the structure and function of the various subunits is intensely studied. The primary sequence of the RNAP β’ subunit contains five cysteine residues that are highly conserved. Four of the cysteines coordinate a zinc atom and form the beta prime subunit zinc binding domain (ZBD). Mutation of any one of the ZBD cysteines is lethal to the cell. However, the role of the fifth residue (C58), which is located upstream of the ZBD cysteines, has not …


Dispelling The Mirage Of C4-Driven Drought Tolerance In Poaceae: A Phylogenomic Study, Matthew P. Nissenbaum Jan 2020

Dispelling The Mirage Of C4-Driven Drought Tolerance In Poaceae: A Phylogenomic Study, Matthew P. Nissenbaum

Graduate Research Theses & Dissertations

Climate change has been considered a key driver for adaptations in water usage efficiency (WUE) in plants. Perceptions persist that C4 photosynthesis is indicative of some level of WUE. Here, we examined the interaction and evolution of WUE within the grass family, Poaceae, as it pertains to photosynthetic pathway. Unique to this study is the magnitude of taxa sampled, presence of intrageneric sampling, and use of complete plastid genomes (plastomes) for phylogenomic analyses.

310 species were sampled, including 26 with newly sequenced plastomes, which were assembled de novo from next-generation sequencing data. Additional plastomes were downloaded from the National Center …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


Evidence Of Y Chromosome Long Non-Coding Rnas Involved In The Radiation Response Of Male Non-Small Cell Lung Cancer Cells, Tayvia Brownmiller Jan 2020

Evidence Of Y Chromosome Long Non-Coding Rnas Involved In The Radiation Response Of Male Non-Small Cell Lung Cancer Cells, Tayvia Brownmiller

Graduate Theses, Dissertations, and Problem Reports

Non-small cell lung cancer (NSCLC) is the number one cause of cancer related mortality in the United States and worldwide. Advanced and therapeutically resistant lung tumors contribute to the high rate of mortality from NSCLC, therefore there is a need for new methods of diagnosing and treating this disease. Long non-coding RNAs (lncRNAs) have been shown to be a crucial component of human molecular biology, regulating nearly every cellular pathway from chromatin condensation to transcription and translation. Furthermore, many lncRNAs have been classified as oncogenes or tumor suppressors, highlighting the various molecular mechanisms they are involved in regarding the formation …


The Effects Of Internal Physiology On Polyphenic Horn Development In The Dung Beetle Onthophagus Taurus, Naomi Garrett Williamson Jan 2020

The Effects Of Internal Physiology On Polyphenic Horn Development In The Dung Beetle Onthophagus Taurus, Naomi Garrett Williamson

Graduate Theses, Dissertations, and Problem Reports

An organism’s phenotype can be affected in development by alterations to gene expression based on environmental inputs. Nutrition is one such environmental input and the central regulator of development of large horn or small horn phenotypes in the dung beetle species, Onthophagus taurus. However, little is known about the nature of chemical compounds that are critical to this plastic horn development. To better understand these compounds, we are utilizing an untargeted metabolomic approach as well as a targeted gene approach. Through the metabolomic approach, it was uncovered that environmental conditions tend to have a greater impact on metabolomic composition …


Development And Validation Of Gene Delivery Methods For ​Crassostrea Virginica, Adrienne N. Tracy Jan 2020

Development And Validation Of Gene Delivery Methods For ​Crassostrea Virginica, Adrienne N. Tracy

Honors Theses

The Eastern oyster (Crassostrea virginica) is an important part of the East Coastal USA economy because aquaculture creates jobs. Sadly, the oysters are under constant threat due to increasing pollution, red tides, and diseases. Bivalves, and oysters in particular, are also becoming potential model organisms in medical research. With the sequencing of the oyster genome, scientists are focusing on deciphering the function of the predicted genes. However, the limited number of molecular and cellular tools available makes functional annotation of the genome challenging. A consistent, replicable gene delivery system needs to be developed to assess gene function and understand the …


Developmental Mechanisms For The Diversification Of Polyphenic Morphs In The Head Horn Of Onthophagine Beetles (Coleoptera: Scarabaeidae Onthophagus Taurus): Plasticity Through Nutrition, Logan Paul Zeigler Jan 2020

Developmental Mechanisms For The Diversification Of Polyphenic Morphs In The Head Horn Of Onthophagine Beetles (Coleoptera: Scarabaeidae Onthophagus Taurus): Plasticity Through Nutrition, Logan Paul Zeigler

Graduate Theses, Dissertations, and Problem Reports

Developmental plasticity is the phenotypic variation between organisms that is caused by environmental interactions affecting the developmental systems of organisms. The research focused primarily on nutrition-responsive developmental plasticity. In this research we used the nutritionally determined head horn development of Onthophagus taurus to better understand the developmental mechanisms and genetic underpinnings of nutrition-responsive trait development. We focused specifically on altering the availability of specific nutrition-related primary metabolites, cholesterol and palmitic acid, identified in the activity of The Hedgehog pathway, a critical pathway in head horn development. By altering diet composition using cholesterol, reducing transcript expression of an acyltransferase gene, rasp …


The Roles Of Polar Cell Extensions In Drosophila Micropyle Formation, Bradford Hull Jan 2020

The Roles Of Polar Cell Extensions In Drosophila Micropyle Formation, Bradford Hull

Theses and Dissertations--Biology

The Drosophila micropyle is a conserved formation utilized to allow sperm passage past the robust eggshell structure for fertilization. Micropyle formation follows a unique acellular tubulogenesis method where it is secreted and shaped by specialized follicle cells including the border cells and polar cells. In late oogenesis, the polar cells form extensions that are necessary to create the micropyle pore through which sperm enters. Previous work established that polar cell extension presence is required for micropyle pore formation. We investigated temporal requirements of extensions throughout chorion deposition and found extensions are required during the beginning and middle of choriogenesis, but …