Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

2012

Articles 1 - 18 of 18

Full-Text Articles in Cell and Developmental Biology

Tet1: A Unique Dna Demethylase For Maintenance Of Dna Methylation Pattern, Chunlei Jin Dec 2012

Tet1: A Unique Dna Demethylase For Maintenance Of Dna Methylation Pattern, Chunlei Jin

Dissertations & Theses (Open Access)

DNA methylation at the C5 position of cytosine (5-methylcytosine, 5mC) is a crucial epigenetic modification of the genome and has been implicated in numerous cellular processes in mammals, including embryonic development, transcription, X chromosome inactivation, genomic imprinting and chromatin structure. Like histone modifications, DNA methylation is also dynamic and reversible. However, in contrast to well defined DNA methyltransferases, the enzymes responsible for erasing DNA methylation still remain to be studied. The ten-eleven translocation family proteins (TET1/2/3) were recently identified as Fe(II)/2-oxoglutarate (2OG)-dependent 5mC dioxygenases, which consecutively convert 5mC into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine both in vitro and in mammalian …


Genetic Analysis Of The Hippo Pathway In Mouse Liver, Li Lu Dec 2012

Genetic Analysis Of The Hippo Pathway In Mouse Liver, Li Lu

Dissertations & Theses (Open Access)

Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing …


Scribble Acts In The Drosophila Fat-Hippo Pathway To Regulate Warts Activity, Shilpi Verghese, Indrayani Waghmare, Hailey Kwon, Katelin Hanes, Madhuri Kango-Singh Nov 2012

Scribble Acts In The Drosophila Fat-Hippo Pathway To Regulate Warts Activity, Shilpi Verghese, Indrayani Waghmare, Hailey Kwon, Katelin Hanes, Madhuri Kango-Singh

Biology Faculty Publications

Epithelial cells are the major cell-type for all organs in multicellular organisms. In order to achieve correct organ size, epithelial tissues need mechanisms that limit their proliferation, and protect tissues from damage caused by defective epithelial cells. Recently, the Hippo signaling pathway has emerged as a major mechanism that orchestrates epithelial development. Hippo signaling is required for cells to stop proliferation as in the absence of Hippo signaling tissues continue to proliferate and produce overgrown organs or tumors. Studies in Drosophila have led the way in providing a framework for how Hippo alters the pattern of gene transcription in target …


The Effect Of Acp1-Ada1 Genetic Interaction On Human Life Span, Nazzareno Lucarini, Valerio Napolioni, Andrea Magrini, Fulvia Gloria Sep 2012

The Effect Of Acp1-Ada1 Genetic Interaction On Human Life Span, Nazzareno Lucarini, Valerio Napolioni, Andrea Magrini, Fulvia Gloria

Human Biology Open Access Pre-Prints

Acid phosphatase (ACP1) is a polymorphic enzyme which catalyzes the conversion of flavinmononucleotide (FMN) to riboflavin and regulates the cellular concentration of flavin-adeninedinucleotide (FAD) and, consequently, energy metabolism. Its activity is modulated by adenosine deaminase (ADA1) genotype. Aim of our work is to verify whether individuals with a high proportion of ACP1 f isozyme and carrying ADA*2 allele, displaying the highest phosphatase activity, may have a higher life expectancy. Genomic DNA was extracted from peripheral blood of 569 females and 509 males (18-106 years) randomly recruited from Central Italy. These samples were subdivided into three sexspecific age groups …


Condensin Ii Promotes The Formation Of Chromosome Territories By Inducing Axial Compaction Of Polyploid Interphase Chromosomes, Christopher R. R. Bauer, Tom A. Hartl, Giovanni Bosco Aug 2012

Condensin Ii Promotes The Formation Of Chromosome Territories By Inducing Axial Compaction Of Polyploid Interphase Chromosomes, Christopher R. R. Bauer, Tom A. Hartl, Giovanni Bosco

Dartmouth Scholarship

The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate …


The Effects Of Cytokinin On The Transcriptional Regulation Of Pin Expression In Arabidopsis Thaliana, Elizabeth Burgess Jul 2012

The Effects Of Cytokinin On The Transcriptional Regulation Of Pin Expression In Arabidopsis Thaliana, Elizabeth Burgess

Honors Theses and Capstones

The processes of cell division and differentiation are critical to the development of any multicellular organism. During the formation of plant roots these processes take place at a region of the root tip called the meristem. Cytokinin and auxin are two plant growth hormones that influence this process. Although these two growth hormones are both necessary they also appear in many ways to have an antagonistic relationship. As meristematic root cells undergo differentiation they cease dividing. It has been proposed that the size of the root meristem and thus the overall rate of root growth are determined by the balance …


Uncovering Dual Roles For Perk Signaling During Experimentally Induced Pancreatitis, Elena Fazio Jun 2012

Uncovering Dual Roles For Perk Signaling During Experimentally Induced Pancreatitis, Elena Fazio

Electronic Thesis and Dissertation Repository

Pancreatitis is characterized by inappropriate activation of digestive enzyme

precursors, or zymogens, local and systemic inflammation, dysregulation of

cellular calcium (Ca2+), and induction of the unfolded protein response (UPR).

The UPR consists of three distinct pathways all of which are activated during

pancreatitis. However, the molecular roles of each remain unclear. The

protein kinase RNA (PKR)-like ER kinase (PERK) pathway reduces general

protein translation by phosphorylating eIF2!, and is activated within minutes

of initiating pancreatic damage. Microarray analysis carried out by our lab

revealed robust upregulation of the PERK pathways members Activating

Transcription Factor (ATF) 3 and stanniocalcin (STC) 2. …


Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby May 2012

Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby

Senior Honors Projects

Cellulose is a carbohydrate polymer that is composed of repeating glucose subunits. Being the most abundant organic compound in the biosphere and comprising a large percentage of all plant biomass, cellulose is extremely plentiful and has a significant role in nature. Cellulose is present in plant cell walls, in commercial products such as those made from wood or cotton, and is of interest to the biofuel industry as a potential alternative fuel source. Although indigestible by humans, cellulose is nutritionally valuable, serving as a dietary fiber. Because of its ubiquity and importance in many areas, studying cellulose will prove to …


Fluorescence-Based Reporter For Gauging Cyclic Di-Gmp Levels In Pseudomonas Aeruginosa, Morten T. Rybtke, Bradley R. Borlee, Keiji Murakami, Yasuhiko Irie, Morten Hentzer, Thomas E. Nielsen, Michael Givskov, Matthew R. Parsek, Tim Tolker-Nielsen May 2012

Fluorescence-Based Reporter For Gauging Cyclic Di-Gmp Levels In Pseudomonas Aeruginosa, Morten T. Rybtke, Bradley R. Borlee, Keiji Murakami, Yasuhiko Irie, Morten Hentzer, Thomas E. Nielsen, Michael Givskov, Matthew R. Parsek, Tim Tolker-Nielsen

Biology Faculty Publications

The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge …


Studies On Enzyme Functional Evolution In The Sabath Multigene Family Using Phylogenetic And Biochemical Approaches, Ruiqi Huang Apr 2012

Studies On Enzyme Functional Evolution In The Sabath Multigene Family Using Phylogenetic And Biochemical Approaches, Ruiqi Huang

Masters Theses

Gene duplication is believed to be the major source for providing genetic materials for the innovation and diversification of protein functions; natural selection and/or neutral drift then works on these genetic materials to guide their evolutionary directions. Here, I used the salicylic acid/benzoic acid/theobromine (SABATH) multigene family to study how natural selection acted on duplicated genes to prompt functional diversification. Members in this family methylate plant secondary metabolites by transferring the methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group or ring nitrogen of the substrates. In the Apocynaceae and Solanaceae lineage of this family, I documented three putative gene …


Neurodegeneration - A Means To An End, Amit Singh Apr 2012

Neurodegeneration - A Means To An End, Amit Singh

Biology Faculty Publications

Cell death, a global phenomenon found throughout the animal kingdom, is a mechanism to maintain tissue homeostasis and for adaptation to changes in the environment [1,2]. Millions of cells die in our body daily- they succumb to stress and commit suicide by a mechanism referred to as cell death or apoptosis [2-4]. Under normal conditions cells are continuously replaced by new cells from the stemor progenitor- cells. For example, an optimum balance in shedding of dead cells from the skin and their replenishment by new ones maintain our health and hygiene. In this context, apoptosis is a mechanism to eliminate …


The Dietary Isoprenoid Perillyl Alcohol Inhibits Telomerase Activity In Prostate Cancer Cells, Tabetha Sundin Apr 2012

The Dietary Isoprenoid Perillyl Alcohol Inhibits Telomerase Activity In Prostate Cancer Cells, Tabetha Sundin

Theses and Dissertations in Biomedical Sciences

This is the first evidence that a plant-derived compound–perillyl alcohol regulates telomerase activity via the mammalian target of rapamycin (mTOR) pathway in prostate cancer cells. Telomerase–the enzyme responsible for immortalizing cells through telomeric repeats addition–is de-repressed early in an aspiring cancer cell. We hypothesized that perillyl alcohol regulates hTERT (human telomerase reverse transcriptase) at the translational and post-translational levels via its effects on the mTOR pathway. A rapid suppression of telomerase activity was detected in prostate cancer cell lines (PC-3 and DU145) in response to biologically-relevant concentrations and short incubations of perillyl alcohol or the mTOR inhibitor—rapamycin.

Western blot analysis …


Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter Jan 2012

Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influ


Tumor Suppression By Cell Competition Through Regulation Of The Hippo Pathway, Chiao-Lin Chen, Molly C. Schroeder, Madhuri Kango-Singh, Chunyao Tao, Georg Halder Jan 2012

Tumor Suppression By Cell Competition Through Regulation Of The Hippo Pathway, Chiao-Lin Chen, Molly C. Schroeder, Madhuri Kango-Singh, Chunyao Tao, Georg Halder

Biology Faculty Publications

Homeostatic mechanisms can eliminate abnormal cells to prevent diseases such as cancer. However, the underlying mechanisms of this surveillance are poorly understood. Here we investigated how clones of cells mutant for the neoplastic tumor suppressor gene scribble (scrib) are eliminated from Drosophila imaginal discs. When all cells in imaginal discs are mutant for scrib, they hyperactivate the Hippo pathway effector Yorkie (Yki), which drives growth of the discs into large neoplastic masses. Strikingly, when discs also contain normal cells, the scrib− cells do not overproliferate and eventually undergo apoptosis through JNK-dependent mechanisms. However, induction of apoptosis does …


Genetics And Cancer, Sachin Puri Jan 2012

Genetics And Cancer, Sachin Puri

A with Honors Projects

Genes' effect in body and relationship with cancer. Role in cell cycle and angiogenesis.


Identification Of Cellular Functions Of Cardiolipin As Physiological Modifiers Of Barth Syndrome, Amit Shridhar Joshi Jan 2012

Identification Of Cellular Functions Of Cardiolipin As Physiological Modifiers Of Barth Syndrome, Amit Shridhar Joshi

Wayne State University Dissertations

Cardiolipin (CL) is an anionic phospholipid synthesized in the mitochondrial inner membrane. Perturbation of CL metabolism leads to Barth syndrome (BTHS), a life threatening genetic disorder. I utilized genetic, biochemical and cell biological approaches in yeast to elucidate the cellular functions of CL. Understanding the functions of CL is expected to shed light on the pathology and possible treatments for BTHS.

BTHS is caused by mutations in TAZ1, which encodes a CL remodeling enzyme called tafazzin. BTHS patients exhibit a wide range of clinical presentations, indicating that physiological modifiers influence the BTHS phenotype. A targeted synthetic lethality screen was performed …


Comparative Developmental Transcriptomics Of Echinoderms, Roy Vaughn Jan 2012

Comparative Developmental Transcriptomics Of Echinoderms, Roy Vaughn

USF Tampa Graduate Theses and Dissertations

The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage …


Higher Il-6 And Il6:Igf Ratio In Patients With Barth Syndrome, Lori D. Wilson, Sadeeka Al-Majid, Cyril Rakovski, Christina D. Schwindt Jan 2012

Higher Il-6 And Il6:Igf Ratio In Patients With Barth Syndrome, Lori D. Wilson, Sadeeka Al-Majid, Cyril Rakovski, Christina D. Schwindt

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Barth Syndrome (BTHS) is a serious X-linked genetic disorder associated with mutations in the tafazzin gene (TAZ, also called G4.5). The multi-system disorder is primarily characterized by the following pathologies: cardiac and skeletal myopathies, neutropenia, growth delay, and exercise intolerance. Although growth anomalies have been widely reported in BTHS, there is a paucity of research on the role of inflammation and the potential link to alterations in growth factors levels in BTHS patients.

Methods: Plasma from 36 subjects, 22 patients with Barth Syndrome (0.5 - 24 yrs) and 14 healthy control males (8 - 21 yrs) was …