Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Microfluidics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Biotechnology

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo May 2023

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo

KGI Theses and Dissertations

Nucleic acid amplification tests (NAATs) are among the diagnostic tests with the highest sensitivity and specificity. However, they are more complex to develop than other diagnostic tests such as biochemical tests and lateral flow immunoassay tests. Polymerase chain reaction (PCR) is the gold standard for NAATs. PCR requires thermal cycling to achieve clonal amplification of the target pathogen DNA for diagnosis. Thermal cycling poses a challenge in the development of PCR diagnostics for point-of-care (POC) settings. Loop-mediated isothermal amplification (LAMP) offers an isothermal method for NAATs diagnostics. The advancement of the microfluidics field significantly enhances the development of LAMP diagnostics …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Primer Payload System For Higher-Order Multiplex Lamp: Design And Development Of Unit Processes, Tochukwu Dubem Anyaduba Mar 2021

Primer Payload System For Higher-Order Multiplex Lamp: Design And Development Of Unit Processes, Tochukwu Dubem Anyaduba

KGI Theses and Dissertations

Design and Development of Platforms for the Application of Loop-mediated Isothermal Nucleic Acid Amplification, LAMP, in the Diagnosis of Polymicrobial Diseases

Tochukwu Dubem Anyaduba, Travis Schlappi (PI)

For the past two decades, several isothermal nucleic acid amplification technologies have emerged. These are mostly in response to the need for robust molecular diagnostic tools amenable to point-of-care and limited-resource settings. Of these, loop-mediated isothermal amplification, LAMP, stands out as a highly specific and rapid alternative to the polymerase chain reaction, PCR. One of LAMP's significant characteristics involves using four essential and two loop (rate increasing) primers to recognize six to eight …


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


Exploiting Click-Chemistry And Microfluidics To Map The Neuronal Itinerary Of App Processing And Amyloid-Beta Generation, Namratha Srinivas May 2018

Exploiting Click-Chemistry And Microfluidics To Map The Neuronal Itinerary Of App Processing And Amyloid-Beta Generation, Namratha Srinivas

McKelvey School of Engineering Theses & Dissertations

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and is the sixth leading cause of death in the United States with approximately 5.5 million Americans diagnosed with it. The neuropathological hallmark includes extracellular senile plaques and intraneuronal neurofibrillary tangles. Recent GWAS studies have identified genes associated with AD, and have revealed several classes of genes implicated in disease pathogenesis. In particular, three general pathways associated with an increased risk of AD included: 1) cholesterol metabolism, innate immune system, and the membrane trafficking. Our lab has focused on intracellular trafficking as it relates to the processing of amyloid precursor protein (APP), …


Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang Jan 2018

Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang

Dissertations and Theses

More than 172 million people are influenced by a retinal disorder that stems from either age-related or developmental causes. Of those, 1.5 million people endure a developmental retinal disorder. In the developing retina, neural cells undergo a series of highly complicated differentiation and migration process. A main cause of these diseases is abnormal collective migration of neural progenitors hindering the retinogenesis process. However, our grasp of collective migration and signaling molecules, critical to the developing retina, is incompletely understood. Understanding the molecular mechanisms, such as the fibroblast growth factor pathway, that regulate glial and neuronal migration provides decisive insights in …


Experimental Demonstration Of Bindingless Signal Delivery In Human Cells Via Microfluidics, Fang-Tzu Chuang Jul 2014

Experimental Demonstration Of Bindingless Signal Delivery In Human Cells Via Microfluidics, Fang-Tzu Chuang

Fang-Tzu Chuang

The cellular signal transduction is commonly believed to rely on the direct “contact” or “binding” of the participating molecule reaction that depends positively on the corresponding molecule concentrations. In living systems, however, it is somewhat difficult to precisely match the corresponding rapid “binding,” depending on the probability of molecular collision, existing in the cellular receptor-ligand interactions. Thus, a question arises that if there is another mechanism (i.e., bindingless) that could promote this signal communication. According to this hypothesis, we report a cellular model based on the examination of intracellular calcium concentration to explore whether the unidentified signal delivery in cells …


Nano-Enabled Synthetic Biology: A Cell Mimic Based Sensing Platform For Exploiting Biochemical Networks, Piro Siuti Aug 2011

Nano-Enabled Synthetic Biology: A Cell Mimic Based Sensing Platform For Exploiting Biochemical Networks, Piro Siuti

Doctoral Dissertations

Exploring and understanding how the smallest scale features of a cell affect biochemical reactions has always been a challenge. Nanoscale fabrication advancements have allowed scientists to create small volume reaction containers that resemble the physical scale of cell membranes. Engineers seek to use biological design principles to manipulate information and import new functionality to such synthetic devices, which in turn, play a crucial role in allowing them to explore the effects of physical transport and extreme conditions of temperature and pH on reaction systems. Engineered reaction containers can be physically and chemically defined to control the flux of molecules of …


In Situ Preconcentration By Ac Electrokinetics For Rapid And Sensitive Nanoparticle Detection, Kai Yang Aug 2011

In Situ Preconcentration By Ac Electrokinetics For Rapid And Sensitive Nanoparticle Detection, Kai Yang

Doctoral Dissertations

Reducing cost and time is a major concern in clinical diagnostics. Current molecular diagnostics are multi-step processes that usually take at least several hours or even days to complete multiple reagents delivery, incubations and several washing processes. This highly labor-intensive work and lack of automation could result in reduced reliability and low efficiency. The Laboratory-on-a-chip (LOC), taking advantage of the merger and development of microfluidics and biosensor technology, has shown promise towards a solution for performing analytical tests in a self-contained and compact unit, enabling earlier and decentralized testing. However, challenges are to integrate the fluid regulatory elements on a …