Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biotechnology

Multifaceted Roles Of Meg3 In Cellular Senescence And Atherosclerosis, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Vijaya Bhaskar Baki, Matthew Moran, Huabo Su, Xinghui Sun May 2024

Multifaceted Roles Of Meg3 In Cellular Senescence And Atherosclerosis, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Vijaya Bhaskar Baki, Matthew Moran, Huabo Su, Xinghui Sun

Department of Biochemistry: Faculty Publications

Background and aims: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long non-coding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis.

Methods and Results: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr−/− mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified …


Role Of Autophagy In Acridocarpus Orientalis-Induced Anti-Breast Cancer Activity, Suhib Hisham Ahmed Saeed Altabbal Nov 2021

Role Of Autophagy In Acridocarpus Orientalis-Induced Anti-Breast Cancer Activity, Suhib Hisham Ahmed Saeed Altabbal

Theses

Breast cancer is the most frequently diagnosed cancer in women worldwide. Triple Negative Breast Cancer (TNBC), which lacks the expression of the hormonal Estrogen Receptor (ER) and Progesterone Receptor (PR), and the amplification of Human Epidermal Growth Factor Receptor 2 (HER2), is not responsive to the hormonal therapy. Therefore, chemotherapy and radiotherapy, which cause severe side effects, are the current available choices to treat TNBC. Hence, there is an urgent need to find new therapeutic choices for TNBC. It is estimated that 50% of all drugs in clinical use during the 21st century are natural products and plants derived. …


Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding Rna Targets, Challenges And Therapeutic Opportunities, Xinghui Sun, Mark W. Feinberg Jun 2021

Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding Rna Targets, Challenges And Therapeutic Opportunities, Xinghui Sun, Mark W. Feinberg

Department of Biochemistry: Faculty Publications

Cellular senescence is a stable form of cell cycle arrest in response to various stressors. While it serves as an endogenous pro-resolving mechanism, detrimental effects ensue when it is dysregulated. In this review, we introduce recent advances for cellular senescence and inflammaging, the underlying mechanisms for the reduction of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned from p16 reporter mice, and the development of machine learning algorithms in cellular senescence. We focus on pathobiological insights underlying cellular senescence of the vascular endothelium, a critical interface between blood and all tissues. Common causes and hallmarks of endothelial senescence …


Genetic Engineering Of Lesquerella With Increased Ricinoleic Acid Content In Seed Oil, Grace Q. Chen, Kumiko Johnson, Tara J. Nazarenus, Grisel Ponciano, Eva Morales, Edgar B. Cahoon Jan 2021

Genetic Engineering Of Lesquerella With Increased Ricinoleic Acid Content In Seed Oil, Grace Q. Chen, Kumiko Johnson, Tara J. Nazarenus, Grisel Ponciano, Eva Morales, Edgar B. Cahoon

Department of Biochemistry: Faculty Publications

Seeds of castor (Ricinus communis) are enriched in oil with high levels of the industrially valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the cooccurrence of the ricin toxin in its seeds. Lesquerella (Physaria fendleri) is being developed as an alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH by a lesquerella elongase, PfKCS18. Oleic acid (18:1) is the substrate for 18:1OH synthesis, but it is also used by fatty acid desaturase 2 …


Long Non-Coding Rna Meg3 Deficiency Impairs Glucose Homeostasis And Insulin Signaling By Inducing Cellular Senescence Of Hepatic Endothelium In Obesity, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran, Martonio Ponte Viana, Sarah L. Schlichte, Matthew C. Zimmerman, Oleh Khalimonchuk, Mark W. Feinberg, Xinghui Sun Jan 2021

Long Non-Coding Rna Meg3 Deficiency Impairs Glucose Homeostasis And Insulin Signaling By Inducing Cellular Senescence Of Hepatic Endothelium In Obesity, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran, Martonio Ponte Viana, Sarah L. Schlichte, Matthew C. Zimmerman, Oleh Khalimonchuk, Mark W. Feinberg, Xinghui Sun

Department of Biochemistry: Faculty Publications

Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated β–galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in …


Long Non-Coding Rna Meg3 Deficiency Impairs Glucose Homeostasis And Insulin Signaling By Inducing Cellular Senescence Of Hepatic Endothelium In Obesity, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran, Martonio Ponte Viana, Sarah L. Schlichte, Matthew C. Zimmerman, Oleh Khalimonchuk, Mark W. Feinberg, Xinghui Sun Jan 2021

Long Non-Coding Rna Meg3 Deficiency Impairs Glucose Homeostasis And Insulin Signaling By Inducing Cellular Senescence Of Hepatic Endothelium In Obesity, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran, Martonio Ponte Viana, Sarah L. Schlichte, Matthew C. Zimmerman, Oleh Khalimonchuk, Mark W. Feinberg, Xinghui Sun

Department of Biochemistry: Faculty Publications

Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated β–galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …