Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

West Virginia University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Biotechnology

The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current Jan 2023

The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current

Graduate Theses, Dissertations, and Problem Reports

Early embryonic loss is a significant factor in livestock species' infertility, resulting in an economic deficit. In cattle, the in vivo fertilization rate is ~90%, with an average calving rate of about 55%, indicating an embryonic-fetal mortality rate of roughly 35%. Further, 70-80% of total embryonic loss in cattle occurs during the first three weeks after insemination, particularly between days 7-16. Growing evidence indicates that the oocyte plays an active role in regulating critical aspects of the reproductive process required for successful fertilization, embryo development, and pregnancy. However, defining oocyte quality remains enigmatic. Recently, many have abandoned the notion that …


Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney Jan 2023

Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney

Graduate Theses, Dissertations, and Problem Reports

The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of oocyte competence. Oocyte competence, which refers to the presence of imperative molecular factors in the oocyte that are critical for high oocyte quality, is directly related to the ability of the oocyte to result in a successful pregnancy following fertilization. Over the past few decades, the development and optimization of assisted reproductive technologies, particularly in vitrofertilization, have enabled the beef and dairy industries to advance cattle genetics and productivity. However, only approximately 40% of bovine embryos will develop to the blastocyst stage in vitro. In addition, bovine embryos …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


Enhancing Water Stress Tolerance In Floriculture Crops, Suejin Park Jan 2019

Enhancing Water Stress Tolerance In Floriculture Crops, Suejin Park

Graduate Theses, Dissertations, and Problem Reports

Water deficit is one of the major constraints on plant growth and development, causing reduction of crop productivity. To minimize water loss, among many adaptation strategies, plants close their stomata to reduce transpiration. The stomatal closure is regulated by light, internal CO2 concentration, and plant hormones, mainly abscisic acid. Plants’ response mechanisms to water deficit are complex processes involving numerous genes and various signaling pathways. Floriculture crops are often exposed to water deficit during shipping and retailing, and these periods often result in damaged crops and profit loss. Understanding of plant responses to water deficit stress will provide us an …


Structure Of The Ambrosia Beetle (Coleoptera: Curculionidae) Mycangia Revealed Through Micro-Computed Tomography, You Li, Yongying Ruan, Matthew T. Kasson, Edward L. Stanley, Conrad P.D.T Gillett, Andrew J. Johnson, Mengna Zhang, Jiri Hulcr Jan 2018

Structure Of The Ambrosia Beetle (Coleoptera: Curculionidae) Mycangia Revealed Through Micro-Computed Tomography, You Li, Yongying Ruan, Matthew T. Kasson, Edward L. Stanley, Conrad P.D.T Gillett, Andrew J. Johnson, Mengna Zhang, Jiri Hulcr

Faculty & Staff Scholarship

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) rely on a symbiosis with fungi for their nutrition. Symbiotic fungi are preserved and transported in specialized storage structures called mycangia. Although pivotal in the symbiosis, mycangia have been notoriously difficult to study, given their minute size and membranous structure. We compared the application of novel visualization methods for the study of mycangia, namely micro-computed tomography (micro-CT) and laser ablation tomography (LATscan) with traditional paraffin sectioning. Micro-CT scanning has shown the greatest promise in new organ discovery, while sectioning remains the only method with sufficient resolution for cellular visualization. All three common types …


Chitosan Biopolymer Promotes Yield And Stimulates Accumulation Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Julakha Akter Mukta, Abdullah As Sabir, Dipall Rani Gupta, Mohammed Mohi-Ud-Din, Mirza Hasanuzzaman, Md. Giashuddin Miah, Mahfuzur Rahman, Md Tofazzai Islam Jan 2018

Chitosan Biopolymer Promotes Yield And Stimulates Accumulation Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Julakha Akter Mukta, Abdullah As Sabir, Dipall Rani Gupta, Mohammed Mohi-Ud-Din, Mirza Hasanuzzaman, Md. Giashuddin Miah, Mahfuzur Rahman, Md Tofazzai Islam

Faculty & Staff Scholarship

Strawberry is a well-known source of natural antioxidants with excellent free radical scav- enging capacity. This study determined the effects of chitosan application in field condition on plant growth, fruit yield and antioxidant activities in strawberry fruit. Foliar applications of chitosan on strawberry significantly increased plant growth and fruit yield (up to 42% higher) compared to untreated control. Increased fruit yield was attributed to higher plant growth, individual fruit weight and total fruit weight/plant due to the chitosan application. Surprisingly, the fruit from plants sprayed with chitosan also had significantly higher contents (up to 2.6- fold) of carotenoids, anthocyanins, flavonoids …


Quantum Confined Peptide Assemblies With Tunable Visible To Near-Infrared Spectral Range, Kai Tao, Zhen Fan, Leming Sun, Pandeeswar Makam, Zhen Tian, Mark Ruegsegger, Shira Shaham-Niv, Derek Hansford, Ruth Aizen, Zui Pan, Scott Galster, Jianjie Ma, Fan Yuan, Mingsu Si, Songnan Qu, Mingjun Zhang, Ehud Gazit, Junbai Li Jan 2018

Quantum Confined Peptide Assemblies With Tunable Visible To Near-Infrared Spectral Range, Kai Tao, Zhen Fan, Leming Sun, Pandeeswar Makam, Zhen Tian, Mark Ruegsegger, Shira Shaham-Niv, Derek Hansford, Ruth Aizen, Zui Pan, Scott Galster, Jianjie Ma, Fan Yuan, Mingsu Si, Songnan Qu, Mingjun Zhang, Ehud Gazit, Junbai Li

Faculty & Staff Scholarship

Quantum confined materials have been extensively studied for photoluminescent applica- tions. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio- imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Pleiotropic And Epistatic Network-Based Discovery: Integrated Networks For Target Gene Discovery, Deborah Weighill, Piet Jones, Manesh Shah, Priya Ranjan, Wellington Muchero, Jeremy Schmutz, Avinash Sreedasyam, David Macaya-Sanz, Robert Sykes, Nan Zhao, Madhavi Z. Martin, Stephen Difazio, Timothy J. Tschaplinski, Gerald Tuskan, Daniel Jacobson Jan 2018

Pleiotropic And Epistatic Network-Based Discovery: Integrated Networks For Target Gene Discovery, Deborah Weighill, Piet Jones, Manesh Shah, Priya Ranjan, Wellington Muchero, Jeremy Schmutz, Avinash Sreedasyam, David Macaya-Sanz, Robert Sykes, Nan Zhao, Madhavi Z. Martin, Stephen Difazio, Timothy J. Tschaplinski, Gerald Tuskan, Daniel Jacobson

Faculty & Staff Scholarship

Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant’s sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes use …


Macrophage Sensing Of Single- Walled Carbon Nanotubes Via Toll- Like Receptors, Sourav P. Mukherjee, Olesja Bondarenko, Pekka Kohonen, Fernando T. Andon, Tana Brzicova, Isabel Gessner, Sanjay Mathur, Massimo Bottini, Paolo Calligari, Lorenzo Stella, Elena Kisin, Anna Shvedova, Reija Autio, Heli Salminen-Mankonen, Ritta Lahesmaa, Bengt Fadeel Jan 2018

Macrophage Sensing Of Single- Walled Carbon Nanotubes Via Toll- Like Receptors, Sourav P. Mukherjee, Olesja Bondarenko, Pekka Kohonen, Fernando T. Andon, Tana Brzicova, Isabel Gessner, Sanjay Mathur, Massimo Bottini, Paolo Calligari, Lorenzo Stella, Elena Kisin, Anna Shvedova, Reija Autio, Heli Salminen-Mankonen, Ritta Lahesmaa, Bengt Fadeel

Faculty & Staff Scholarship

Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger

inflammation. However, how these materials are ‘sensed’ by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. …


Plant Probiotic Bacteria Bacillus And Paraburkholderia Improve Growth, Yield And Content Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Abdullah As Sabir, Julakha Akter Mukrta, Mohibul Alam Khan, Mohammed Mohi-Ud-Din, Giashuddin Miah, Mahfuzur Rahman, M. Tofazzal Islam Jan 2018

Plant Probiotic Bacteria Bacillus And Paraburkholderia Improve Growth, Yield And Content Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Abdullah As Sabir, Julakha Akter Mukrta, Mohibul Alam Khan, Mohammed Mohi-Ud-Din, Giashuddin Miah, Mahfuzur Rahman, M. Tofazzal Islam

Faculty & Staff Scholarship

Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals.

This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. …


Re-Framing Biotechnology Regulation, Alison Peck Jan 2017

Re-Framing Biotechnology Regulation, Alison Peck

Law Faculty Scholarship

Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health-but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly …


Copyright For Engineered Dna: An Idea Whose Time Has Come?, Christopher M. Holman Apr 2011

Copyright For Engineered Dna: An Idea Whose Time Has Come?, Christopher M. Holman

West Virginia Law Review

The rapidly emerging field of synthetic biology has tremendous potential to address some of the most compelling challenges facing our planet by providing clean renewable energy, nutri- tionally-enhanced and environmentally friendly agricultural products, and revolutionary new life-saving cures. However, leaders in the synthetic biology movement have voiced concern that biotechnology's current patent-centric approach to intellec- tual property is in many ways ill-suited to meet the challenge of synthetic biology, threatening to impede follow-on innovation and open access technology. For years, copyright and patent protection for computer software have existed side-by-side, the two forms of intellectual property complementing one another. Numerous …


Leveling The Playing Field In Gmo Risk Assessment: Importers, Exporters, And The Limits Of Science, Alison Peck Jul 2010

Leveling The Playing Field In Gmo Risk Assessment: Importers, Exporters, And The Limits Of Science, Alison Peck

Law Faculty Scholarship

The WTO system requires that trade restrictions meant to protect health and safety be based on a risk assessment supported by “sufficient scientific evidence.” Scholars and international standards organizations have pointed out, however, that science is incapable of providing answers to questions of health and safety without incorporating the risk assessors’ value judgments and assumptions. Before GMO-importing countries conduct risk assessments, GMO-producing and exporting countries have already conducted their own risk assessments, which led to their decision to produce and market the products in the first place. Both the exporting and importing countries’ risk assessments employ science informed by the …


The New Imperialism: Toward An Advocacy Strategy For Gmo Accountability, Alison Peck Jan 2008

The New Imperialism: Toward An Advocacy Strategy For Gmo Accountability, Alison Peck

Law Faculty Scholarship

No abstract provided.