Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender May 2021

Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender

University Scholar Projects

One of the most common causes of bone graft rejection is lack of a vascular network connecting the graft to the existing native tissue – allowing for nutrient flow. Under current grafting techniques, the existing blood vessel network in the patient slowly invades the implant in order to supply the injured site with its necessary nutrients. The purpose of this research is to determine if a synthetic bone graft with a stable microvascular network can be developed in vitro. I hypothesize that the use of indirect angiogenic factors such as sonic hedgehog homolog and hypoxia-inducible factor-1 in combination with the …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte Apr 2020

An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte

Honors Scholar Theses

The CRISPR-Cas system is a promising form of gene editing, especially for the agriculture industry. The ability to make single-nucleotide edits within a gene of interest, without the need to introduce foreign DNA, is a powerful tool for designing healthier and more efficient crops and food animals. This system provides opportunity for increased nutritional value, decreased food waste, and more economically and environmentally sustainable food production. Though this biotechnology is facing mechanistic limitations due to off-target effects and inefficient homology-directed repair, vast improvements have already been made to improve its efficacy. The CRISPR-Cas system is already the most advanced form …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …