Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biotechnology

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi Jan 2024

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi

Graduate Theses, Dissertations, and Problem Reports

Phosphodiesterase-6 (PDE6) serves as a pivotal component in the phototransduction pathways of both cone and rod photoreceptors. In cones, PDE6 consists of tetrameric subunits: inhibitory (γ') and catalytic (α'). The catalytic subunit, PDE6α', contains a C-terminal prenylation motif. Deletion of this motif is associated with achromatopsia (ACHM), a form of color blindness. The mechanisms underlying the disease and the roles of PDE6 lipidation in vision remain elusive. Meanwhile, rod PDE6 is composed of α and β catalytic subunits and γ inhibitory subunits, with alterations in the C-terminal "prenylation motif" of PDE6β linked to retinitis pigmentosa (RP) pathology. In this comprehensive …


Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney Jan 2023

Elucidation Of The Role Of Agouti-Signaling Protein Throughout Folliculogenesis And Early Embryonic Development In Cattle, Heather L. Chaney

Graduate Theses, Dissertations, and Problem Reports

The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of oocyte competence. Oocyte competence, which refers to the presence of imperative molecular factors in the oocyte that are critical for high oocyte quality, is directly related to the ability of the oocyte to result in a successful pregnancy following fertilization. Over the past few decades, the development and optimization of assisted reproductive technologies, particularly in vitrofertilization, have enabled the beef and dairy industries to advance cattle genetics and productivity. However, only approximately 40% of bovine embryos will develop to the blastocyst stage in vitro. In addition, bovine embryos …


The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current Jan 2023

The Investigation Of Novel Bovine Oocyte-Specific Long Non-Coding Rnas And Their Roles In Oocyte Maturation And Early Embryonic Development, Jaelyn Zoe Current

Graduate Theses, Dissertations, and Problem Reports

Early embryonic loss is a significant factor in livestock species' infertility, resulting in an economic deficit. In cattle, the in vivo fertilization rate is ~90%, with an average calving rate of about 55%, indicating an embryonic-fetal mortality rate of roughly 35%. Further, 70-80% of total embryonic loss in cattle occurs during the first three weeks after insemination, particularly between days 7-16. Growing evidence indicates that the oocyte plays an active role in regulating critical aspects of the reproductive process required for successful fertilization, embryo development, and pregnancy. However, defining oocyte quality remains enigmatic. Recently, many have abandoned the notion that …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


Enhancing Water Stress Tolerance In Floriculture Crops, Suejin Park Jan 2019

Enhancing Water Stress Tolerance In Floriculture Crops, Suejin Park

Graduate Theses, Dissertations, and Problem Reports

Water deficit is one of the major constraints on plant growth and development, causing reduction of crop productivity. To minimize water loss, among many adaptation strategies, plants close their stomata to reduce transpiration. The stomatal closure is regulated by light, internal CO2 concentration, and plant hormones, mainly abscisic acid. Plants’ response mechanisms to water deficit are complex processes involving numerous genes and various signaling pathways. Floriculture crops are often exposed to water deficit during shipping and retailing, and these periods often result in damaged crops and profit loss. Understanding of plant responses to water deficit stress will provide us an …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Macrophage Sensing Of Single- Walled Carbon Nanotubes Via Toll- Like Receptors, Sourav P. Mukherjee, Olesja Bondarenko, Pekka Kohonen, Fernando T. Andon, Tana Brzicova, Isabel Gessner, Sanjay Mathur, Massimo Bottini, Paolo Calligari, Lorenzo Stella, Elena Kisin, Anna Shvedova, Reija Autio, Heli Salminen-Mankonen, Ritta Lahesmaa, Bengt Fadeel Jan 2018

Macrophage Sensing Of Single- Walled Carbon Nanotubes Via Toll- Like Receptors, Sourav P. Mukherjee, Olesja Bondarenko, Pekka Kohonen, Fernando T. Andon, Tana Brzicova, Isabel Gessner, Sanjay Mathur, Massimo Bottini, Paolo Calligari, Lorenzo Stella, Elena Kisin, Anna Shvedova, Reija Autio, Heli Salminen-Mankonen, Ritta Lahesmaa, Bengt Fadeel

Faculty & Staff Scholarship

Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger

inflammation. However, how these materials are ‘sensed’ by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. …


Copyright For Engineered Dna: An Idea Whose Time Has Come?, Christopher M. Holman Apr 2011

Copyright For Engineered Dna: An Idea Whose Time Has Come?, Christopher M. Holman

West Virginia Law Review

The rapidly emerging field of synthetic biology has tremendous potential to address some of the most compelling challenges facing our planet by providing clean renewable energy, nutri- tionally-enhanced and environmentally friendly agricultural products, and revolutionary new life-saving cures. However, leaders in the synthetic biology movement have voiced concern that biotechnology's current patent-centric approach to intellec- tual property is in many ways ill-suited to meet the challenge of synthetic biology, threatening to impede follow-on innovation and open access technology. For years, copyright and patent protection for computer software have existed side-by-side, the two forms of intellectual property complementing one another. Numerous …