Open Access. Powered by Scholars. Published by Universities.®

2017

13C stable isotope probing.

Articles 1 - 1 of 1

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Seasonal Switchgrass Ecotype Contributions To Soil Organic Carbon, Deep Soil Microbial Community Composition And Rhizodeposit Uptake During An Extreme Drought, Catherine E. Stewart, Damaris Roosendaal, Karolien Denef, Elizabeth Pruessner, Louise H. Comas, Gautam Sarath, Virginia L. Jin, Marty R. Schmer, Madhavan Soundararajan Jan 2017

Seasonal Switchgrass Ecotype Contributions To Soil Organic Carbon, Deep Soil Microbial Community Composition And Rhizodeposit Uptake During An Extreme Drought, Catherine E. Stewart, Damaris Roosendaal, Karolien Denef, Elizabeth Pruessner, Louise H. Comas, Gautam Sarath, Virginia L. Jin, Marty R. Schmer, Madhavan Soundararajan

Department of Biochemistry: Faculty Publications

The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition. We used a pulse-chase 13C labeling experiment with compound-specific stable-isotope probing to investigate the importance of rhizodeposit C to deep soil microbial biomass under two switchgrass ecotypes (Panicum virgatum L., Kanlow and Summer) with contrasting root morphology. We quantified root phenology, soil microbial biomass (phospholipid fatty acids, PLFA), and microbial rhizodeposit uptake (13C-PLFAs) to 150 cm over …