Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Microvascular Stenosis In Critical Limb Ischemia: Role Of Partial Endothelial To Mesenchymal Transition, Jacqueline M. Chevalier Jul 2019

Microvascular Stenosis In Critical Limb Ischemia: Role Of Partial Endothelial To Mesenchymal Transition, Jacqueline M. Chevalier

Electronic Thesis and Dissertation Repository

Critical limb ischemia (CLI) is a widespread and debilitating manifestation of atherosclerosis. Unfortunately, revascularization strategies are often precluded or unsuccessful, resulting in amputation. A major reason for treatment failure is likely co-existing abnormalities in ­­the microvasculature. However, the specific microvascular defects present in end-stage PAD in humans remain unknown.

The purpose of this study was to delineate abnormalities in the microvascular wall in the critically ischemic skeletal muscle of patients with CLI.

To elucidate the microvascular landscape in CLI, we studied human tibialis anterior and gastrocnemius muscles harvested from below-knee amputations of 10 individuals with CLI. Control muscles are from …


Human Equilibrative Nucleoside Transporter Subtype 1: Structure-Function Analysis Using Cysteine Mutagenesis And Thiol Modifying Techniques, Jamie Park Aug 2012

Human Equilibrative Nucleoside Transporter Subtype 1: Structure-Function Analysis Using Cysteine Mutagenesis And Thiol Modifying Techniques, Jamie Park

Electronic Thesis and Dissertation Repository

Human equilibrative nucleoside transporter 1 is the main mediator of bi-directional nucleoside flux and is found ubiquitously. Inhibitor and substrate interactions with ENT1 are known to be affected by cysteine-modifying reagents. Our aim was to investigate the importance of cysteine residues in hENT1 function and identify which residues were sensitive to thiol modification for further application of cysteine scanning mutagenesis on extracellular loop 5. Transporter function was assessed by the binding of [3H]NBMPR and the cellular uptake of [3H]2-chloroadenosine. Treatment of hENT1 with the neutral sulfhydryl-modifier methyl methanethiosulfonate (MMTS) enhanced [3H]NBMPR binding but decreased …


Identification Of Regions Responsible For The Open Conformation Of S100a10 Using Chimaeric S100a11/S100a10 Proteins, Liliana Santamaria-Kisiel Dec 2010

Identification Of Regions Responsible For The Open Conformation Of S100a10 Using Chimaeric S100a11/S100a10 Proteins, Liliana Santamaria-Kisiel

Electronic Thesis and Dissertation Repository

S100A11 is a dimeric, EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2), and facilitate membrane vesiculation events. In contrast to other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an “open” conformation that is very similar to S100A11 in its calcium-bound state (Ca2+-S100A11). To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimeric proteins were constructed where regions …