Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Mutation

Selected Works

Microbiology

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel Caffrey, Konstantin Zeldovich, Ping Liu, Glen Gallagher, Daniel Aiello, Alyssa Porter, Evelyn Kurt-Jones, Daniel Bolon, Yu-Ping Poh, Jeffrey Jensen, Celia Schiffer, Timothy Kowalik, Robert Finberg, Jennifer Wang Mar 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel Caffrey, Konstantin Zeldovich, Ping Liu, Glen Gallagher, Daniel Aiello, Alyssa Porter, Evelyn Kurt-Jones, Daniel Bolon, Yu-Ping Poh, Jeffrey Jensen, Celia Schiffer, Timothy Kowalik, Robert Finberg, Jennifer Wang

Glen R. Gallagher

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug ...


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang Jan 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang

Celia A. Schiffer

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug ...


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate ...