Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader May 2016

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader

Senior Honors Theses

Metabolic disorders affect around thirty-four percent of the population in the United States. Among these disorders is lactose intolerance, which results from diminished production of the human lactase enzyme. This disorder and others like it are genetically determined and cannot be cured. However, the use of transformed bacteria implanted in the colon may provide a means by which the faulty pathway can be bypassed. To test whether transformed bacteria have the capability to aid in the digestion of normally indigestible compounds, a transformed strain of Escherichia coli overexpressing the beta-galactosidase enzyme encoded by the lacZ gene was colonized in the …


Regulation Of Ty1 Retrovirus-Like Transposon Rna Localization And Translation, Ryan Joseph Palumbo Jan 2014

Regulation Of Ty1 Retrovirus-Like Transposon Rna Localization And Translation, Ryan Joseph Palumbo

Legacy Theses & Dissertations (2009 - 2024)

Replication of the Ty1 retrovirus-like transposon of the yeast Saccharomyces cerevisiae is stringently regulated to reduce the frequency of deleterious retrotransposition events. However, under stress conditions, Ty1 retrotransposition can lead to adaptive genomic alterations. To characterize host regulation of Ty1 retrotransposition, I analyzed ribosome profiling data and showed that Ty1 RNA is efficiently translated. Moreover, the ribosome biogenesis factors BUD21, DBP7, HCR1, LOC1, MRT4, and PUF6 are required for optimal expression of the Ty1 protein Gag.