Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Molecular Biology

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


Discrimination Of Monozygotic Twins Using Dna Methylation Levels Of One Cpg Site At Chromosome 3, Dino O. Robinson May 2020

Discrimination Of Monozygotic Twins Using Dna Methylation Levels Of One Cpg Site At Chromosome 3, Dino O. Robinson

Student Theses

Conventional STR typing, commonly used in forensics for human identification, poses a problem in criminal cases and paternity disputes involving monozygotic (MZ) twins because they share identical DNA sequences. To date, no routine method is available in forensics to differentiate between individuals of MZ pairs. Recently, epigenetic methods measuring differential DNA methylation patterns have been applied to MZ twin differentiation. In this study, we investigated the potential to identify MZ twins using a previously identified DNA methylation site in chromosome 3, cg18562578, in a sample of 129 MZ and 37 dizygotic (DZ) twin pairs. We used bisulfite converted saliva DNA …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


In Silico Modeling Of Epigenetic-Induced Changes In Photoreceptor Cis-Regulatory Elements, Reafa A. Hossain, Nicholas R. Dunham, Raymond A. Enke, Christopher E. Berndsen Dec 2017

In Silico Modeling Of Epigenetic-Induced Changes In Photoreceptor Cis-Regulatory Elements, Reafa A. Hossain, Nicholas R. Dunham, Raymond A. Enke, Christopher E. Berndsen

Ray Enke Ph.D.

No abstract provided.


Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan Jan 2017

Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan

Theses and Dissertations

DNA methylation is necessary for learning, memory consolidation and has been implicated in a number of neuropsychiatric disorders. Obtaining high quality and comprehensive data for the three common forms of methylation in brain is challenging for methylome-wide association studies (MWAS). To address this we optimized a panel of enrichment methods for screening the brain methylome. Results show that these enrichment techniques approach the coverage and fidelity of the current gold standard bisulfite based techniques. Our MBD-based method can also be used with low amounts of genomic material from limited human biomaterials. Psychiatric disorders have high prevalence and are often chronic …


Epigenetic Characterization Of Human Retina Cells, Nicholas R. Dunham May 2016

Epigenetic Characterization Of Human Retina Cells, Nicholas R. Dunham

Senior Honors Projects, 2010-2019

DNA methylation is an epigenetic modifier that modulates gene expression in plant and vertebrate genomes. The aim of this study was to characterize the role of DNA methylation in the human retina, particularly within rod and cone photoreceptor retinal neurons. Previous studies investigating DNA methylation in murine retinal cells and retina-derived human retinoblastoma immortalized cell culture lines demonstrate an inverse relationship between DNA methylation and transcriptional activity. Here, we used gene-specific bisulfite pyrosequencing analysis to measure DNA methylation in the genomes of human ocular cells in an effort to characterize the role of this important epigenetic modifier. These results can …


Structural And Functional Characterization Of The Mbd2-Nurd Co-Repressor Complex, Megha Desai Jan 2014

Structural And Functional Characterization Of The Mbd2-Nurd Co-Repressor Complex, Megha Desai

Theses and Dissertations

The MBD2-NuRD co-repressor complex is an epigenetic regulator of the developmental silencing of embryonic and fetal β-type globin genes in adult erythroid cells as well as aberrant methylation-dependent silencing of tumor suppressor genes in neoplastic diseases. Biochemical characterization of the MBD2-NuRD complex in chicken erythroid cells identified RbAp46/48, HDAC1/2, MTA1/2/3, p66α/β, Mi2α/β and MBD2 to comprise this multi-protein complex.

In the work presented in Chapter 2, we have pursued biophysical and molecular studies to describe a previously uncharacterized domain of human MBD2 (MBD2IDR). Biophysical analyses show that MBD2IDR is an intrinsically disordered region (IDR). Despite this inherent …


Cellular Adaptation Of Macrophages To Anthrax Lethal Toxin-Induced Pyroptosis Via Epigenetic Mechanisms, Chae Young Han Apr 2013

Cellular Adaptation Of Macrophages To Anthrax Lethal Toxin-Induced Pyroptosis Via Epigenetic Mechanisms, Chae Young Han

Electronic Thesis and Dissertation Repository

Cellular adaptation to microbial stresses has been demonstrated in several cell types. Macrophages (MФ) are sentinel immune cells fending off invading microbes. Anthrax lethal toxin (LeTx) is a key virulence factor released by Bacillus anthracis that causes rapid cell death, pyroptosis. A small number of RAW246.7 macrophages (~4%) exposed to a non-lethal dose of LeTx become resistant to LeTx-induced pyroptosis for ~ 4 weeks, termed “toxin-induced resistance (TIR)”. Here, I showed that high levels of DNA methyl transferase1 (DNMT1) expression were maintained although global genomic methylation levels were not high in TIR. TIR cells treated with the DNMT inhibitor 5-azacitidine …