Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Molecular Biology

Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee May 2022

Mutations In The N-Terminus Of The Mod(Mdg4) Btb Domain Reveal An Unexpected Role Of Mod(Mdg4) In Chromosome Segregation In Female Meiosis, Gwyneth D E Walker, Bruce D. Mckee

Chancellor’s Honors Program Projects

No abstract provided.


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


Role Of The Drosophila Beaf Protein In Chromatin Domain Insulator And Promoter Function, Mukesh Maharjan May 2019

Role Of The Drosophila Beaf Protein In Chromatin Domain Insulator And Promoter Function, Mukesh Maharjan

LSU Doctoral Dissertations

Proper folding of eukaryotic genomes is required to allow correct interactions between different parts of chromosomes. Precise and timely interactions among different parts of a chromosome allow proper functioning inside a nucleus, including gene regulation, DNA replication and DNA repair. Eukaryotic regulatory elements that facilitate folding and interactions include enhancers, promoters and insulator elements. Insulator elements and their binding proteins play an important role in regulating correct chromatin structure and function. The Drosophila melanogaster special chromatin structure (scs’) is one such insulator. The Boundary Element Associated Factor (BEAF) binds to scs’. BEAF is a 32 kDa protein that has two …


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a …


The Drosophila Neuroblasts: A Model System For Human Ribosomopathies, Sonu Shrestha Baral Mar 2019

The Drosophila Neuroblasts: A Model System For Human Ribosomopathies, Sonu Shrestha Baral

LSU Doctoral Dissertations

This dissertation describes the use of Drosophila neuroblasts (NBs) to model human ribosomopathies; the overall goal is to understand why specific stem cell and progenitor cell populations are the primary targets in nucleolar stress as seen in the ribosomopathies. Chapter 1 provides an overview of relevant literature. Chapter 2 describes nucleolar stress in Drosophila neuroblasts as a model for human ribosomopathies. For this, we induce nucleolar stress by using the UAS-GAL4 system to express RNAi that depletes Nopp140 transcripts, and we also employ homozygous, CRISPR-Cas9-generated Nopp140 gene disruptions with a systemic null phenotype (Nopp140-/-). Embryonic lethality was observed …


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


A Genetic Analysis Of Nuclear Functions Of The Lipin Protein In Drosophila Melanogaster, Xeniya Rudolf May 2017

A Genetic Analysis Of Nuclear Functions Of The Lipin Protein In Drosophila Melanogaster, Xeniya Rudolf

Graduate Theses and Dissertations

Lipins are a family of proteins that have critical functions in the control of fat storage and energy homeostasis. Biochemically, lipins have two functions. They provide an enzymatic activity (phosphatidate phosphatase or PAP activity) in the glycerol-3 phosphate pathway that leads to the production of storage fats (triacylglycerols). In addition, they play a role in the regulation of genes in the cell nucleus as transcriptional co-regulators. The PAP activity of lipins has been widely studied in a number of organisms. However, the transcriptional co-regulator function is not as well described in the literature. The transcriptional function of lipins depends on …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros Oct 2015

Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros

Victor R. Ambros

The Drosophila let-7-Complex (let-7-C) is a polycistronic locus encoding three ancient microRNAs: let-7, miR-100, and fly lin-4 (miR-125). We find that the let-7-C locus is principally expressed in the pupal and adult neuromusculature. let-7-C knockout flies appear normal externally but display defects in adult behaviors (e.g., flight, motility, and fertility) as well as clear juvenile features in their neuromusculature. We find that the function of let-7-C to ensure the appropriate remodeling of the abdominal neuromusculature during the larval-to-adult transition is carried out predominantly by let-7 alone. This heterochronic role of let-7 is likely just one of the ways in which …


Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan Jan 2015

Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan

Wayne State University Dissertations

SIN3, the scaffold protein of a histone modifying complex is conserved from yeast to mammals. Drosophila SIN3 associates with both a histone deactylase RPD3 and a histone demethylase dKDM5/LID. Immunopurification of dKDM5/LID verifies a previously observed interaction with SIN3 and RPD3. Furthermore, deficiency of dKDM5/LID phenocopies deficiency of SIN3 in many cellular and developmental processes. Knockdown of both Sin3A and lid hinder cell proliferation in Drosophila cultured cells and developing flies. Knockdown of these genes also results in a curved wing phenotype implicating a role in wing development. Analysis of underlying gene expression changes upon decreased expression of SIN3, dKDM5/LID …


Characterizing Cyclin J By Identifying Conserved Protein-Protein Interactions, Phillip Jacob Selman Jan 2013

Characterizing Cyclin J By Identifying Conserved Protein-Protein Interactions, Phillip Jacob Selman

Wayne State University Theses

Cyclins are proteins that bind to Cyclin-dependent kinases, or Cdks, through a conserved domain called the Cyclin Box. Many Cyclins regulate the cell cycle. A few Cyclins impact cellular processes outside of the cell cycle. Also, a few Cyclins have poorly understood functions.

Cyclin J is a member of the Cyclin superfamily of proteins. Cyclin J is conserved among all metazoans, but is presently not well understood. All the research done on Cyclin J has been done in Drosophila.

Its mRNA is present in the early embryo, then disappears, only to reappear in adult females. When probing protein extracts with …


Cysteine Desulfurase And Isd11: A Drosophila Model, Rahul Ravindran Nair Jan 2013

Cysteine Desulfurase And Isd11: A Drosophila Model, Rahul Ravindran Nair

Wayne State University Theses

ABSTRACT

Cysteine desulfurase and Isd11: A Drosophila model

Iron-sulfur clusters are cofactors with evolutionary origins that date back to the pre-biotic world. Ever since life originated, these cofactors have intermingled with proteins to play vital roles in sustaining life. My research focuses on one such protein, the cysteine desulfurase (Nfs) that has the PLP cofactor incorporated in its active site and avails of the catalytic property of PLP to provide sulphur for Iron-sulfur cluster biogenesis and assembly in a cell. Interestingly, in a eukaryotic cell, despite the versatility of PLP, cysteine desulfurase's role as a "sulphur-extractor" is incomplete without another …


Recombinant Production Of Vitronectin And Insights Into Its Structure And Role In Fibrinolysis, Cameron T. Landers May 2011

Recombinant Production Of Vitronectin And Insights Into Its Structure And Role In Fibrinolysis, Cameron T. Landers

Chancellor’s Honors Program Projects

No abstract provided.


Effects Of Chemical Aneuploidogens On Taxol Purified Drosophila And Mouse Brain Microtubules Polymerization And Depolymerization In Vitro, Anil Sehgal Jul 1990

Effects Of Chemical Aneuploidogens On Taxol Purified Drosophila And Mouse Brain Microtubules Polymerization And Depolymerization In Vitro, Anil Sehgal

Biological Sciences Theses & Dissertations

The effects of aneuploidogens (aneuploidy causing agents) on taxol-purified microtubules from Drosophila and mouse brain in vitro were studied by using a spectrophotometric assay and electron microscopy. Colchicine, acetonitrile, propionitrile, acrylonitrile, dimethyl sulfoxide (DMSO), griseofulvin and cadmium chloride inhibited microtubule polymerization whereas methoxyethyl acetate (MEA) and methyl mercuric chloride (MMC) did not. All aneuploidogens tested (at 50mM) resulted in reduced rate of elongation of mouse brain microtubules. MMC, cadmium chloride and DMSO resulted in increased rates of Drosophila microtubule elongation whereas the rest of the drugs resulted in decreases. The in vitro results from Drosophila correlate well with the previously …