Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood Dec 2014

Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood

Doctoral Dissertations

Microbial chemotaxis receptors (chemoreceptors) are complex proteins that sense the external environment and signal for flagella-mediated motility, serving as the GPS of the cell. In order to sense a myriad of physicochemical signals and adapt to diverse environmental niches, sensory regions of chemoreceptors are frenetically duplicated, mutated, or lost. Conversely, the chemoreceptor signaling region is a highly conserved protein domain. Extreme conservation of this domain is necessary because it determines very specific helical secondary, tertiary, and quaternary structures of the protein while simultaneously choreographing a network of interactions with the adaptor protein CheW and the histidine kinase CheA. This dichotomous …