Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


An Evaluation Of Co-Culture Parameters Effecting Antibiotic Production In Soil Microbes, Rebecca Lindow Jan 2020

An Evaluation Of Co-Culture Parameters Effecting Antibiotic Production In Soil Microbes, Rebecca Lindow

Master's Theses and Doctoral Dissertations

The rise of infections caused by antibiotic resistant bacteria, compounded by a reduction in antibiotic discovery and development, jeopardizes human health. Historically, antibiotics derive from secondary metabolites produced by soil microbes in pure culture, but recent genetic evidence suggests that microbes can produce more secondary metabolites than are currently observed. The modified crowded plate technique directly identifies antibiotic-producing soil microbes that were co-plated with a target pathogen. Here, this technique was refined by testing the effect of a D-alanine auxotrophic target pathogen rather than a prototrophic pathogen as well as investigating conditions most conducive to antibiotic production. Antibiotic producing conditions …