Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Regulation Of Gene Expression By Rna Binding Proteins And Micrornas, Kyle Cottrell Dec 2017

Regulation Of Gene Expression By Rna Binding Proteins And Micrornas, Kyle Cottrell

Arts & Sciences Electronic Theses and Dissertations

Regulation of gene expression is essential to life. Post-transcriptional regulation of gene expression is a complex process with many inputs that lead to changes in localization, translation and stability of mRNAs. The translation and stability of many mRNAs is regulated by cis-elements, such as mRNA-structure or codon optimality; and by trans-acting factors such as RBPs and miRNAs. Here I report on the complex interactions between RBPs, miRNAs and characteristics of their target mRNAs in respect to effects on translation and RNA stability.

Using a reporter based approach we studied modulation of microRNA-mediated repression by various mRNA characteristics. We observed the …


Regulation Of Arf16-2 By Microrna160 During Soybean Root Nodule Development, Spencer Schreier Jan 2017

Regulation Of Arf16-2 By Microrna160 During Soybean Root Nodule Development, Spencer Schreier

Electronic Theses and Dissertations

Soybean is an excellent candidate for sustainable agriculture due to its production of nutritious, versatile beans and the ability to form symbiotic organs called root nodules that perform nitrogen fixation. As demand for both yield and sustainable agriculture continue to increase, root nodules offer an attractive alternative to expensive and environmentally harmful nitrogen fertilizers. Understanding root nodule formation may open genetic engineering avenues for optimizing nitrogen fixation performance and transferring the nodule-formation ability to other plants. A major determinant of nodule numbers and quality in soybean is microRNA 160 (miR160), which dictates developmental stage-specific auxin sensitivity by targeting repressor auxin …


Dnp63a Suppresses Cell Invasion By Targeting Rac1 Through Mir-320a, Amjad Ahmed Aljagthmi Jan 2017

Dnp63a Suppresses Cell Invasion By Targeting Rac1 Through Mir-320a, Amjad Ahmed Aljagthmi

Browse all Theses and Dissertations

DNp63a, a member of the p53 family of transcription factors, is overexpressed in a number of cancers and known to play a role in proliferation, differentiation, migration and invasion. DNp63a has been shown to regulate several microRNAs that play a role in both development and cancer, but to date there has not been a global analysis of p63- regulated miRNA. Using next-generation sequencing of small RNA from wild type and sip63 transfected HaCaT cells, our laboratory recently identified a number of DNp63a- regulated miRNAs by RNA-Seq studies which may serve as biomarkers of cancer progression. We identified a novel miRNA, …