Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Biased Genetic Screen Identifies Novel Genes Involved In Antiviral Defense, Tianyun Long Nov 2017

Biased Genetic Screen Identifies Novel Genes Involved In Antiviral Defense, Tianyun Long

LSU Doctoral Dissertations

ABSTRACT

RNA interference (RNAi) mediates potent antiviral response across kingdoms. In Caenorhabditis elegans nematodes, antiviral RNAi requires a virus sensor that is conserved in mammals and is amplified by secondary small interfering RNAs that are produced in a Dicer-independent manner.

To better understand worm antiviral RNAi, I carried out a biased genetic screen, aiming to identify novel antiviral RNAi genes. To speed up the gene discovery process, the reporter worms used for this genetic screen were engineered to contain extra copies of 4 known antiviral RNAi genes. Therefore, genetic alleles derived from these 4 genes will be automatically rejected during …


The Role Of Rna Interference In The Control Of Leishmania Rna Virus 1 Infection, Erin Acino Brettmann May 2017

The Role Of Rna Interference In The Control Of Leishmania Rna Virus 1 Infection, Erin Acino Brettmann

Arts & Sciences Electronic Theses and Dissertations

The presence of Leishmania RNA virus 1 (LRV1) in parasites of the Leishmania (Viannia) subgenus increases the virulence of the parasite in mouse models of leishmaniasis and is correlated with treatment failure, relapse, and the development of mucocutaneous disease in humans. LRV1 is not shed or infectious; rather, the infection is persistent, and as yet it is unknown how the parasite controls virus levels. Many eukaryotic organisms use RNA interference (RNAi) to limit virus replication, and Leishmania (Viannia) parasites have an active RNAi pathway. To determine whether Leishmania are capable of using RNAi to control LRV1, we sequenced sRNAs from …


Silica Nanoparticles For The Delivery Of Dna And Rnai In Cancer Treatment, Michael Aaron Vrolijk Jan 2017

Silica Nanoparticles For The Delivery Of Dna And Rnai In Cancer Treatment, Michael Aaron Vrolijk

Graduate College Dissertations and Theses

DNA and interfering RNA (RNAi) – short interfering RNA (siRNA) and micro RNA (miRNA) – are promising new cancer therapies, especially for drug resistant lines. However, they require a delivery system in vivo to prevent degradation and off target effects. Silica based nanoparticles, both solid and mesoporous, are a promising option due to their biocompatibility, ease of preparation and morphology control, reproducibility, and facile addition of functional groups including targeting ligands.

After a brief introduction to cancer treatment and review of the current nanoparticle treatments undergoing clinical trials, this thesis details the many methods explored over the past ten years …