Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Influence Of The Pre-Initiation Complex On Mediator Recruitment In Saccharomyces Cerevisiae, Elisabeth Rose Knoll Jan 2017

Influence Of The Pre-Initiation Complex On Mediator Recruitment In Saccharomyces Cerevisiae, Elisabeth Rose Knoll

Legacy Theses & Dissertations (2009 - 2024)

The Mediator complex plays a central, highly conserved role in eukaryotic transcription by RNA Polymerase II (Pol II) by stimulating the cooperative assembly of a pre-initiation complex (PIC) and recruitment of Pol II for gene activation. Mediator recruitment has generally been ascribed to sequence-specific activators engaging subunits from the tail module which in turn function to recruit the middle and head for complete assembly at the UAS. Mediator subunits of the middle and head then bridge the enhancer to connect with the PIC at the core promoter. It is reported that Mediator recruitment at the UAS preferentially occurs at SAGA-dependent, …


The Role Of The Mediator Transcriptional Co-Activator Complex And Promoter Dependence In Ty1 Retrotransposition In Saccharomyces Cerevisiae, Alicia Salinero Jan 2017

The Role Of The Mediator Transcriptional Co-Activator Complex And Promoter Dependence In Ty1 Retrotransposition In Saccharomyces Cerevisiae, Alicia Salinero

Legacy Theses & Dissertations (2009 - 2024)

Retrotransposons are mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. Saccharomyces cerevisiae has been invaluable to retrotransposon research due to the presence of an active retroelement known as Ty1. The mobility of Ty1 is regulated both positively and negatively by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. The Mediator core complex is organized into genetically and structurally defined head, middle, and tail modules, along with a transiently associated kinase module. We show that with the exception of the kinase module, deletion of non-essential subunits from …


Altered Lipid Metabolism And Adipocyte Activity Support Her2+ Breast Cancer Progression, Jason Wong Jan 2017

Altered Lipid Metabolism And Adipocyte Activity Support Her2+ Breast Cancer Progression, Jason Wong

Legacy Theses & Dissertations (2009 - 2024)

Overexpression of HER2 (ERBB2/neu) in breast cancer is an established clinical marker for aggressive disease and increased mortality. HER2+ breast cancers have increased protein levels of Human Epidermal Growth Factor Receptor 2 and overexpression of its coding gene, ERBB2. Many HER2+ tumors feature concomitant co-expression of the Nuclear Receptor subfamily 1, Group D, Member 1 (NR1D1/RevERBα) which regulates adipogenesis and circadian rhythm; the dysregulation of these two processes are known risk factors for breast cancer. HER2+ breast cancer cells have increased lipid synthesis, with evidence suggesting that NR1D1 is responsible for the upregulation of several genes in the de novo …