Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Pharmacokinetics, Tissue Distribution, Synergistic Activity, And Antitumor Activity Of Two Isomeric Flavones, Crystal L. Whitted Dec 2016

Pharmacokinetics, Tissue Distribution, Synergistic Activity, And Antitumor Activity Of Two Isomeric Flavones, Crystal L. Whitted

Electronic Theses and Dissertations

Flavonoids are polyphenolic secondary metabolites found in plants that have bioactive properties including antiviral, antioxidant, and anticancer. Two isomeric flavone were extracted from Gnaphalium elegans and Achyrocline bogotensis, plants used by the people from the Andean region of South America as remedies for cancer. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5, 7–dihydroxy- 3, 6, 8 trimethoxy flavone/ flavone A) and 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3, 5–dihydroxy-6, 7, 8–trimethoxy flavone/ flavone B) have shown antineoplastic activity against colon cancer cell lines dependent upon their differentiation status. Pharmacokinetic studies reported herein were used to determine dosing for antitumor assays, as well as determine target tissue concentration. These included the …


A Novel Role Of Human Dna Damage Checkpoint Protein Atr In Suppressing Ca2+ Overload-Induced Parp1-Mediated Necrosis, Hui Wang-Heaton Dec 2016

A Novel Role Of Human Dna Damage Checkpoint Protein Atr In Suppressing Ca2+ Overload-Induced Parp1-Mediated Necrosis, Hui Wang-Heaton

Electronic Theses and Dissertations

Ataxia telangiectasia and Rad3-related (ATR) is well known for its regulatory role in DNA damage responses (DDR) as a checkpoint kinase that phosphorylates hundreds of protein substrates. However, its role in cellular non-DNA damage stress responses (NDDR) is unknown. Necrosis is one form of cell death and traditionally has been regarded as a passive and uncontrolled cell death. Recently, evidence has emerged to support the concept that necrosis also may occur in a programmed manner and that PARP1 can be a mediator. Active poly (ADP-ribose) polymerase 1 (PARP1) hydrolyzes nicotinamide adenine dinucleotide (NAD+) to produce poly (ADP-ribose) (PAR) …


Exploring The Relationship Between Behaviour And Neurochemistry In The Polyphenic Spider, Anelosimus Studiosus (Araneae: Theridiidae), Jennifer B. Price Aug 2016

Exploring The Relationship Between Behaviour And Neurochemistry In The Polyphenic Spider, Anelosimus Studiosus (Araneae: Theridiidae), Jennifer B. Price

Electronic Theses and Dissertations

The importance of social behaviour is evident in human society, but there are both costs and benefits associated with cooperation and sociality throughout the animal kingdom. At what point do the benefits outweigh the costs, and when do selective pressures favour sociality and colonization over solitude and independence? To investigate these questions, we have focused on an anomalous species of spider, Anelosimus studiosus, also known now as the northern social spider. Throughout its broad range, A. studiosus is solitary and aggressive, but recently, colonies of cooperative and social individuals have been observed at northern latitudes. This leads to two …


Characterization Of Sip470, A Family 1 Lipid Transfer Protein And Its Role In Plant Stress Signaling, Timothy Ndagi Audam Aug 2016

Characterization Of Sip470, A Family 1 Lipid Transfer Protein And Its Role In Plant Stress Signaling, Timothy Ndagi Audam

Electronic Theses and Dissertations

SIP470, a putative tobacco lipid transfer protein, was identified in a yeast two-hybrid screen to interact with SABP2. SABP2 is a critical role in SA-mediated signaling in tobacco and other plants. In vitro studies using purified recombinant SIP470 confirmed that it is a lipid binding protein. In an attempt to determine its role in mediating stress responses, Arabidopsis T-DNA insertion knockout lines lacking SIP470 homolog were used for the analysis. These mutant plants were defective in basal resistance against microbial pathogens. Expression of defense gene PR-1 was also delayed in these mutant plants. Interestingly, these mutant plants were not defective …


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER …


In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard May 2016

In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard

Undergraduate Honors Theses

Atherosclerosis, characterized by the build-up of cholesterol, immune cells and cellular debris within arterial walls, is accelerated following myocardial infarction by poorly understood mechanisms. Ubiquitin, a small, well-studied intracellular protein involved in protein turnover via the proteasome pathway, has recently been shown to exert extracellular effects on cardiac myocytes, in vitro, and in mice undergoing myocardial remodeling. This study investigates the potential role of extracellular ubiquitin in atherosclerosis by determining its effects on two critical atherosclerotic processes: the migration of vascular smooth muscles cells and the uptake of modified LDL by monocyte/macrophages in foam cell formation. In the presence …


Identification Of N-Acylethanolamine Hydrolyzing Enzyme In Solanum Lycopersicum, Derek A. Stuffle May 2016

Identification Of N-Acylethanolamine Hydrolyzing Enzyme In Solanum Lycopersicum, Derek A. Stuffle

Undergraduate Honors Theses

N-acylethanolamines (NAEs) are fatty acid derivatives that occur naturally in plant and animal systems. In mammals, they regulate physiological functions, including neurotransmission, immune responses, vasodilation, embryo development and implantation, feeding behavior, and cell proliferation. NAEs are metabolized by fatty acid amide hydrolase (FAAH), which belongs to the amidase signature family. It is hypothesized that putative FAAH functions as the catalyst in the metabolism of N-acylethanolamine in tomato plants. To test the hypothesis, FAAH protein homologs were identified in tomato via in silico analysis. Among the six homologs identified, FAAH1 and FAAH2 were selected for further validation. This study …