Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Molecular Biology

Pore Selectivity And Gating Of Arabidopsis Nodulin 26 Intrinsic Proteins And Roles In Boric Acid Transport In Reproductive Growth, Tian Li Dec 2014

Pore Selectivity And Gating Of Arabidopsis Nodulin 26 Intrinsic Proteins And Roles In Boric Acid Transport In Reproductive Growth, Tian Li

Doctoral Dissertations

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional channels of uncharged metabolites and water. They share the same canonical hourglass fold as the aquaporin family. The aromatic arginine (ar/R) selectivity filter controls transport selectivity based on size, hydrophobicity, and hydrogen bonding with substrates. In Arabidopsis thaliana, NIP II subclass proteins contain a conserved ar/R “pore signature” that is composed of Alanine at the helix 2 position (H2), Valine/Isoleucine at the helix 5 position (H5), and an Alanine (LE1) and an invariant Arginine (LE2) at the two loop E positions. In this study, …


The Mechanism Of Lhcp Insertion Into Thylakoid Membranes, Larae Brown Dec 2014

The Mechanism Of Lhcp Insertion Into Thylakoid Membranes, Larae Brown

Graduate Theses and Dissertations

The light harvesting chlorophyll a/b-binding proteins (LHCPs) are the most abundant membrane proteins. LHCP is a nuclear encoded protein which is targeted to the thylakoid membranes by chloroplast signal recognition particles (cpSRP). Insertion into thylakoid membranes is facilitated by the cpSRP receptor cpFtsY and the Alb3 translocase. Work here focused on understanding the molecular events of LHCP insertion into the thylakoid membranes. Specifically, we sought to develop a tool to detect the insertion of the lumen-localized loop of LHCP into thylakoid membranes, which relies on cleavage of the loop by a thylakoid lumen processing protease. We also sought to understand …


Sequence Analysis Of Maize Yellow Stripe3 Candidate Genes, Dennis B. Depaolo Nov 2014

Sequence Analysis Of Maize Yellow Stripe3 Candidate Genes, Dennis B. Depaolo

Masters Theses

The work presented here focuses on the molecular mechanism of phytosiderophore secretion in graminaceous plants. In maize, yellow stripe3 (ys3) is a mutant that is deficient in its ability to secrete iron-chelating compounds of the mugineic acid family known as phytosiderophores. Phytosiderophores are specific to grasses and are used for the acquisition of iron. Genetic linkage mapping of the ys3 locus lead to a region of interest on chromosome 3 defined by marker UMC1773. The sequence of eleven candidate genes (GRMZM2G390345, GRMZM2G390374, GRMZM2G342821, GRMZM5G800764, GRMZM2G502560, GRMZM5G849435, GRMZM2G105766, GRMZM5G876835, GRMZM2G036976, GRMZM2G502563, miR167g) revealed several small deletions …


Biology And Control Of Rice False Smut Caused By Ustilaginoidea Virens (Teleomorph Villosiclava Virens), Andrew Clayton Jecmen May 2014

Biology And Control Of Rice False Smut Caused By Ustilaginoidea Virens (Teleomorph Villosiclava Virens), Andrew Clayton Jecmen

Graduate Theses and Dissertations

Rice false smut (FS), a disease caused by Ustilaginoidea virens (Cke.) Takahashi (1896), was first reported in northeastern Arkansas counties in 1997. The first objective of this research was to establish a collection of U. virens isolates from geographically diverse regions of Arkansas. Three U. virens isolates and chlamydospores from `Templeton' and `Clearfield-151' rice cultivars were used to determine the effects of temperature and pH on mycelial growth and germination. A nested-PCR protocol and histological methods were used to determine if U. virens infects and colonizes rice seedlings and spikelets on panicles. The sensitivity of three U. virens isolates was …


Acetobixan, An Inhibitor Of Cellulose Synthesis Identified By Microbial Bioprospecting, Ye Xia, Lei Lei, Chad Brabham, Jozsef Stork, James R. Strickland, Adam Ladak, Ying Gu, Ian Wallace, Seth Debolt Apr 2014

Acetobixan, An Inhibitor Of Cellulose Synthesis Identified By Microbial Bioprospecting, Ye Xia, Lei Lei, Chad Brabham, Jozsef Stork, James R. Strickland, Adam Ladak, Ying Gu, Ian Wallace, Seth Debolt

Horticulture Faculty Publications

In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action …


Role Of Heme Oxygenase In Modulating Expression Of Ros-Regulatory Enzymes In Medicago Truncatula, Parna Ghosh Jan 2014

Role Of Heme Oxygenase In Modulating Expression Of Ros-Regulatory Enzymes In Medicago Truncatula, Parna Ghosh

Graduate College Dissertations and Theses

Heme Oxygenase (HO) is an enzyme universally found in animals, plants and microbes. In plants, the role of heme oxygenase in the synthesis of the phytochrome chromophore is well recognized and has been extensively studied; however its role in regulating reactive oxygen species (ROS) in plants is just beginning to be explored, particularly in legumes. Legumes interact with Rhizobium bacteria to form symbiotic nitrogen fixing nodules. ROS plays an important role in the development of roots as well as symbiotic nodules. In the model legume Medicago truncatula, ROS in the root is regulated in part by the LATD/NIP gene. …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …


A Structure-Function Analysis Of The Arabidopsis Chloroplast Import Protein Attic20, James H. Campbell Jan 2014

A Structure-Function Analysis Of The Arabidopsis Chloroplast Import Protein Attic20, James H. Campbell

Theses and Dissertations (Comprehensive)

Arabidopsis thaliana protein Tic20 (atTic20) is a member of the translocon at the inner envelope membrane of chloroplasts. Evidence to date suggests it is part of the main preprotein conducting aperture in the complex, but its exact role is still debated. To help characterize its role, a protocol optimizing yield and purity of recombinantly expressed atTic20 was developed, and a series of experiments was performed to examine its secondary structure and its ability to interact with chloroplast transit peptides. The attempt to increase protein yield was successful, with growth at 20oC in the auto-inducing media ZYP-5052 showing the …