Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2009

Biochemistry

Li-Jun Ma

Articles 1 - 1 of 1

Full-Text Articles in Molecular Biology

Genomic Analysis Of The Basal Lineage Fungus Rhizopus Oryzae Reveals A Whole-Genome Duplication, Li-Jun Ma, Ashraf S. Ibrahim, Christopher Skory, Manfred G. Grabherr, Gertraud Burger, Margi Butler, Marek Elias, Alexander Idnurm, B. Franz Lang, Teruo Sone, Ayumi Abe, Sarah E. Calvo, Luis M. Corrochano, Reinhard Engels, Jianmin Fu, Wilhelm Hansberg, Jung-Mi Kim, Chinnappa D. Kodira, Michael J. Koehrsen, Bo Liu, Diego Miranda-Saavedra, Sinead O'Leary, Lucila Ortiz-Castellanos, Russell Poulter, Julio Rodriguez-Romero, José Ruiz-Herrera, Yao-Qing Shen, Qiandong Zeng, James Galagan, Bruce W. Birren, Christina A. Cuomo, Brian L. Wickes Jul 2009

Genomic Analysis Of The Basal Lineage Fungus Rhizopus Oryzae Reveals A Whole-Genome Duplication, Li-Jun Ma, Ashraf S. Ibrahim, Christopher Skory, Manfred G. Grabherr, Gertraud Burger, Margi Butler, Marek Elias, Alexander Idnurm, B. Franz Lang, Teruo Sone, Ayumi Abe, Sarah E. Calvo, Luis M. Corrochano, Reinhard Engels, Jianmin Fu, Wilhelm Hansberg, Jung-Mi Kim, Chinnappa D. Kodira, Michael J. Koehrsen, Bo Liu, Diego Miranda-Saavedra, Sinead O'Leary, Lucila Ortiz-Castellanos, Russell Poulter, Julio Rodriguez-Romero, José Ruiz-Herrera, Yao-Qing Shen, Qiandong Zeng, James Galagan, Bruce W. Birren, Christina A. Cuomo, Brian L. Wickes

Li-Jun Ma

Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous …