Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

The Histone Variant H2av Regulates Stress Responses And Tissue Development Through Interactions With Chromatin Insulator Proteins In Drosophila Melanogaster, James Ryan Simmons Aug 2021

The Histone Variant H2av Regulates Stress Responses And Tissue Development Through Interactions With Chromatin Insulator Proteins In Drosophila Melanogaster, James Ryan Simmons

Doctoral Dissertations

The ability of a cell to sense and respond to various forms of stress is essential to maintain integrity of the genome. Numerous pathways have been implicated in cellular responses to environmental and genotoxic stresses, often involving proteins and complexes that bind DNA directly to orchestrate changes in transcription and genome organization. Chromatin insulators describe a class of protein complex that bind specific sequences in the genome and work through two classically described functions: to restrict communication between enhancers and promoters through physical separation into different genomic domains and to prevent the spread of heterochromatin into euchromatic regions of the …


Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson Aug 2021

Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson

Dissertations & Theses (Open Access)

The human genome is under constant threat from sources of damage and stress. Improper resolution of DNA damage lesions can lead to mutations, oncogene activation, and genomic instability. Difficult-to-replicate-loci present barriers to DNA replication that, when not properly resolved, lead to replication fork stalling and collapse and genomic instability.

DNA damage and replication stress trigger signaling cascades potentiated by multiple types of post-translational modifications, including SUMOylation. Through proteomic analysis of proteins involved in SUMOylation following DNA damage, our lab identified an uncharacterized protein that we named New Player in SUMO-dependent DNA damage repair 4 (NPSD4). Through an additional proteomic screen, …