Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Dna Base Excision Repair And Double Strand Break Repair In Human Fibroblast, Mingyang Li Dec 2017

Dna Base Excision Repair And Double Strand Break Repair In Human Fibroblast, Mingyang Li

LSU Doctoral Dissertations

In eukaryotes, DNA repair mechanisms detect and repair damaged DNA. DNA damage is primarily caused by a variety of exogenous and endogenous sources. Several types of damage to DNA are repaired by different kinds of DNA repair pathways. This dissertation focused on repair of N-methylpurines (NMPs) and double-strand breaks (DSBs) in human fibroblasts.

NMPs, including N7-methylguanine (7MeG) and N3-methyladenine (3MeA), can be induced by environmental methylating agents (e.g. the soil fumigant methyl bromide), chemotherapeutics (e.g. nitrogen mustards), and natural cellular methyl donors like S-adenosylmethionine. In human cells, NMPs are repaired by the multi-step …


Investigating E2f Independent Cell Cycle Control And Tumor Suppression By Prb, Michael J. Thwaites Apr 2017

Investigating E2f Independent Cell Cycle Control And Tumor Suppression By Prb, Michael J. Thwaites

Electronic Thesis and Dissertation Repository

Cellular division is primarily controlled at the G1 to S-phase transition of the cell cycle by the retinoblastoma tumor-suppressor protein (pRB). The ability of pRB to restrict S-phase entry is primarily attributed to the repression of E2F transcription factors required to upregulate cell cycle target genes necessary for cellular division. Interestingly, while pRB is disrupted in the vast majority of human cancers, mutations typically target upstream regulators of pRB leading to inactivation through hyperphosphorylation. The rarity of direct pRB mutations suggests that the regulation of the cell cycle by pRB may involve additional mechanisms outside of E2F repression, as this …


Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn Jan 2017

Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn

Legacy Theses & Dissertations (2009 - 2024)

The human response to environmental carcinogens, some of which require metabolic activation, is highly variable. Factors such as environment, lifestyle, and genetics all influence the rates of exposure to and ultimate bioactivation of these compounds. Genetic factors include mutations to cell-cycle regulation, cell proliferation, and DNA repair genes; however, epidemiological studies may lack significance due to inadequate patient numbers. We used budding yeast as a model organism to determine genetic susceptibility to food-associated carcinogens, including aflatoxin (AFB1) and heterocyclic aromatic amines (HAAs). Budding yeast does not contain P450s that activate these compounds, so expression vectors were induced that contain human …