Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Investigating E2f Independent Cell Cycle Control And Tumor Suppression By Prb, Michael J. Thwaites Apr 2017

Investigating E2f Independent Cell Cycle Control And Tumor Suppression By Prb, Michael J. Thwaites

Electronic Thesis and Dissertation Repository

Cellular division is primarily controlled at the G1 to S-phase transition of the cell cycle by the retinoblastoma tumor-suppressor protein (pRB). The ability of pRB to restrict S-phase entry is primarily attributed to the repression of E2F transcription factors required to upregulate cell cycle target genes necessary for cellular division. Interestingly, while pRB is disrupted in the vast majority of human cancers, mutations typically target upstream regulators of pRB leading to inactivation through hyperphosphorylation. The rarity of direct pRB mutations suggests that the regulation of the cell cycle by pRB may involve additional mechanisms outside of E2F repression, as this …


The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan May 2016

The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan

Dissertations & Theses (Open Access)

The transcription factor NF-κB plays a central role in many aspects of biological processes and diseases, such as inflammation and cancer. Although it has been suggested thatNF-κB is critical in tumorigenesis and tumor progression, the molecular mechanism by which NF-κB is activated in solid tumor remains largely unknown. In the current work, we focus on growth factor receptor-induced NF-κB activation and tumor progression, including epidermal growth factor receptor (EGFR)-induced NF-κB in lung cancer and heregulin receptor (HER2)-induced NF-κB in breast cancer. We found that Mucosa-associated lymphoma translocation protein 1 (MALT1), also known as paracaspase, is required for EGFR-induced NF-κB activation …