Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2014

University of Wisconsin Milwaukee

Cns Regeneration

Articles 1 - 1 of 1

Full-Text Articles in Molecular Biology

Gene Regulatory Pathways Driving Central Nervous System Regeneration In Zebrafish, Ishwariya Venkatesh Dec 2014

Gene Regulatory Pathways Driving Central Nervous System Regeneration In Zebrafish, Ishwariya Venkatesh

Theses and Dissertations

Damage to the central nervous system (CNS) circuitry of adult mammals results in permanent disability. In contrast, the ability to regenerate damaged CNS nerves and achieve functional recovery occurs naturally in fish. The ability of fish to successfully regrow damaged CNS nerves is in part a consequence of their ability to re-express key neuronal growth-associated genes/proteins in response to CNS injury. On such protein is Growth-Associated Protein-43 (Gap43), a protein which is highly enriched in axonal growth cones during CNS development and regeneration. Experiments conducted in mammals have demonstrated that ectopic expression of GAP-43 improves axonal re-growth after injury. Using …