Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

Dissertations & Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates …


Characterization Of A Tumour Suppressor Function Of Ranbpm, Elnaz Atabakhsh Nov 2012

Characterization Of A Tumour Suppressor Function Of Ranbpm, Elnaz Atabakhsh

Electronic Thesis and Dissertation Repository

Ran-binding protein M (RanBPM) is an evolutionarily conserved nucleocytosolic protein that has been proposed to regulate various cellular processes, including protein stability, gene expression, receptor-mediated signalling pathways, cell adhesion, development, and apoptosis. Despite the multitude of functions attributed to RanBPM however, little is known regarding the precise mechanisms by which RanBPM executes these cellular roles. In this work, we seek to address this matter by describing functions for RanBPM in the regulation of apoptotic and pro-survival signalling pathways, and in cellular transformation.

We first identify RanBPM as a pro-apoptotic protein that regulates the activation of the intrinsic apoptotic signalling pathway …


Matrix Metalloproteinase Genes Are Transcriptionally Regulated By E2f Transcription Factors: A Link Between Cell Cycle Control And Metastatic Progression, Jacqueline Lea Johnson Feb 2012

Matrix Metalloproteinase Genes Are Transcriptionally Regulated By E2f Transcription Factors: A Link Between Cell Cycle Control And Metastatic Progression, Jacqueline Lea Johnson

USF Tampa Graduate Theses and Dissertations

The RbµE2F transcriptional regulatory pathway plays a critical role in the cell cycle. Rb is inactivated through multiple waves of phosphorylation, mediated mainly by cyclin D and cyclin E associated kinases. Once Rb is inactivated, cells can enter Sµphase. Collectively, three Rb family members and ten E2F proteins coordinate every additional stage of the cell cycle, from quiescence to mitosis. However the RbµE2F pathway is frequently altered in cancer. Aside from cell proliferation, the RbµE2F pathway regulates other essential cellular processes including apoptosis, cell differentiation, angiogenesis and DNA damage repair pathways, but its role in invasion and cancer progression is …


The Role Of Tumor Suppressors, Ship And Rb, In Immune Suppressive Cells, Michelle Marie Collazo Ruiz Jan 2012

The Role Of Tumor Suppressors, Ship And Rb, In Immune Suppressive Cells, Michelle Marie Collazo Ruiz

USF Tampa Graduate Theses and Dissertations

Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) have been extensively studied in the past 30-40 years. Their potent suppressive capacity shown in several pathological and clinical settings, such as cancer and transplantation, has made it evident that better understanding their development and function is critical.

Specifically, Tregs play a pivotal role in preventing autoimmunity, graft-versus-host disease (GvHD), and organ graft rejection. We previously demonstrated that germline or induced SH2 domain-containing inositol 5-phosphatase (SHIP) deficiency in the host abrogates GvHD. Here we show that SHIP-deficiency promotes an increase of FoxP3+ cells in both the CD4+CD25+ and the CD4+CD25- T …


Modulation Of Anti-Tumor Immune Response By Tgf-Β-Inducible Early Gene 1 (Tieg1), Andi Cani Jan 2012

Modulation Of Anti-Tumor Immune Response By Tgf-Β-Inducible Early Gene 1 (Tieg1), Andi Cani

Wayne State University Theses

Cancer immunotherapy has had limited clinical efficacy partly because regulatory T cells (Treg) suppress the immune response to tumor-associated antigens. Inducible regulatory T cells (iTreg), which are converted from naïve CD4 T cells by TGF-β, an abundant cytokine in the tumor microenvironment, may contribute to this immune suppression. Induction of Foxp3 by TGF-β is mediated by the transcription factor TIEG1 and abrogation of this protein prevents Foxp3 expression. We are testing the hypothesis that blockade of TIEG1 to prevent iTreg conversion will enhance immune response in DNA vaccination to the tumor associated antigen Her-2. Wild type and TIEG1 knockout mice …