Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Notch-1 Specifically Activates Erk1/2 In Multiple Breast Cancer Subtypes, Allison Schuyler Rogowski Jan 2011

Notch-1 Specifically Activates Erk1/2 In Multiple Breast Cancer Subtypes, Allison Schuyler Rogowski

Master's Theses

Notch-1 is a cell fate regulatory protein and a potent breast oncogene. Notch-1 and its ligand Jagged-1 are over-expressed in human breast cancers that are associated with poor overall survival (Reedijk, Odorcic et al. 2005). Deregulated Notch signaling may contribute to tumorigenesis by increasing proliferation, inhibiting differentiation, and preventing apoptosis (Miele, Golde et al. 2006). The mitogen-activated protein kinase (MAPK) pathway is a critical cell signaling pathway that has been implicated in the development and progression of cancer (Hanahan and Weinberg 2000). Four major MAPK pathways are involved in both cell growth and apoptosis. The regulation of these pathways is …


Wee1 Is A Biological Target Of The Mir-17-92 Cluster In Leukemia, Sonia Susan Olikara Jan 2011

Wee1 Is A Biological Target Of The Mir-17-92 Cluster In Leukemia, Sonia Susan Olikara

Master's Theses

MicroRNAs are noncoding RNAs that bind to the 3' untranslated region of their mRNA targets, which causes downregulation of target gene expression. Previous studies have shown that the miR-17-92 cluster, which encodes six miRNAs, is overexpressed in leukemias arising from chromosomal translocations of the Mixed Lineage Leukemia (MLL) gene. In the present study, prediction algorithms identified WEE1, a kinase that inhibits cell cycle progression, as a possible target of five of the six miRNAs. Through luciferase reporter assays, we found that miR-17, miR-20a, and miR-18a specifically target nucleotides 465 to 487 of the 3' UTR of WEE1, while miR-19a and …