Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Graduate Theses and Dissertations

Cell Biology

DNA repair

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Novel Insights Into The Multifaceted Roles Of Blm In The Maintenance Of Genome Stability, Vivek M. Shastri Apr 2019

Novel Insights Into The Multifaceted Roles Of Blm In The Maintenance Of Genome Stability, Vivek M. Shastri

Graduate Theses and Dissertations

Genomic instability is a hallmark of disorders in which DNA replication and repair genes are dysfunctional. The tumor suppressor RECQ helicase gene BLM encodes the 3’-5’ DNA Bloom syndrome helicase BLM, which plays important roles during DNA replication, recombination and repair to maintain genome stability. Mutations within BLM cause Bloom syndrome, an autosomal recessive disorder characterized by growth defects, immunodeficiency, >10-fold higher sister chromatid exchange compared to normal cells, and an increased predisposition to a wide range of cancers from an early age. Single nucleotide polymorphisms or SNPs in BLM have been reported to be associated with susceptibility to ...


The Role Of Sgs1 And Exo1 In The Maintenance Of Genome Stability., Lillian Campos-Doerfler Nov 2017

The Role Of Sgs1 And Exo1 In The Maintenance Of Genome Stability., Lillian Campos-Doerfler

Graduate Theses and Dissertations

Genome instability is a hallmark of human cancers. Patients with Bloom’s syndrome, a rare chromosome breakage syndrome caused by inactivation of the RecQ helicase BLM, result in phenotypes associated with accelerated aging and develop cancer at a very young age. Patients with Bloom’s syndrome exhibit hyper-recombination, but the role of BLM and increased genomic instability is not fully characterized. Sgs1, the only member of the RecQ family of DNA helicases in Saccharomyces cerevisiae, is known to act both in early and late stages of homology-dependent repair of DNA damage. Exo1, a 5′–3′ exonuclease, first discovered to play ...


Nonreplicative Dna Helicases Involved In Maintaining Genome Stability, Salahuddin Syed Apr 2016

Nonreplicative Dna Helicases Involved In Maintaining Genome Stability, Salahuddin Syed

Graduate Theses and Dissertations

Double-strand breaks and stalled forks arise when the replication machinery encounters damage from exogenous sources like DNA damaging agents or ionizing radiation, and require specific DNA helicases to resolve these structures. Sgs1 of Saccharomyces cerevisiae is a member of the RecQ family of DNA helicases and has a role in DNA repair and recombination. The RecQ family includes human genes BLM, WRN, RECQL4, RECQL1, and RECQL5. Mutations in BLM, WRN, and RECQL4 result in genetic disorders characterized by developmental abnormalities and a predisposition to cancer. All RecQ helicases have common features including a helicase domain, an RQC domain, and a ...


Regulation And Targeting Of The Fancd2 Activation In Dna Repair, Valentina Celeste Caceres Jan 2015

Regulation And Targeting Of The Fancd2 Activation In Dna Repair, Valentina Celeste Caceres

Graduate Theses and Dissertations

Fanconi anemia (FA) is a genome instability syndrome that is clinically manifested by bone marrow failure, congenital defects, and elevated cancer susceptibility. The FA pathway is known to regulate the repair of DNA interstrand crosslinks in part through DNA homologous recombination (HR) repair. Up to today 16 FA proteins have been discovered that may participate in the common pathway. Cells that have mutations in the FA genes are hypersensitive to DNA damaging agents and display chromosome instability. A key regulatory event in the FA pathway is monoubiquitination of FANCD2-FANCI heterodimer that is mediated by a multi-component E3 ubiquitin ligase complex ...