Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson May 2016

In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson

Doctoral Dissertations

The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle …


Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce Aug 2013

Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce

Doctoral Dissertations

Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in rural or developing areas. Five oils extracted from Pittosporum resiniferum, Copaifera reticulata, and surrogate oils for Cymbopogon flexuosus, C. martinii, and Dictamnus albus in B20 blends were sent for ASTM International biodiesel testing and run in homogenous charge combustion ignition engines to determine combustion properties and emissions. All oils tested lowered cloud point. Oils derived from Copaifera reticulata also lowered indicated specific fuel consumption and had emissions similar to the ultra-low sulfur diesel control. Characterization …


Protein Engineering For The Enhanced Photo-Production Of Hydrogen By Cyanobacterial Photosystem I, Ifeyinwa Jane Iwuchukwu May 2011

Protein Engineering For The Enhanced Photo-Production Of Hydrogen By Cyanobacterial Photosystem I, Ifeyinwa Jane Iwuchukwu

Doctoral Dissertations

Photosystem I (PSI) from plants, algae, and cyanobacteria can mediate H2 evolution in vivo and in vitro. A simple, self-platinization procedure that permits stable PSI-mediated H2 evolution in vitro has been developed. The H2 evolution capabilities of PSI from Thermosynechococcus elongatus have been characterized. This organism utilizes cytochrome c6 (cyt c6) as the e- donor to P700. Using a solution-based, self-organized platinization of the PSI nanoparticles, this study demonstrates a sodium ascorbate-cyt-PSI-Pt-H2 electron transport and proton reduction system that yields light-dependent H2. The system was thermostable with H2 evolution increasing up to 55°C. In addition, stability studies have shown the …