Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Chlamydia Trachomatis Transformants Show A Significant Reduction In Rates Of Invasion Upon Removal Of Key Tarp Domains, Christopher Parrett Jan 2016

Chlamydia Trachomatis Transformants Show A Significant Reduction In Rates Of Invasion Upon Removal Of Key Tarp Domains, Christopher Parrett

Electronic Theses and Dissertations

Chlamydia trachomatis is an obligate, intracellular bacterium which is known to cause multiple human infections including nongonococcal urethritis (serovars D-K), lymphogranuloma venereum (serovars L1, L2, L3) and trachoma (serovars A-C). The infectious form of the bacterium, called the elementary body (EB), harbors a type III secreted effector known as Tarp (translocated actin recruiting phosphoprotein) which is a candidate virulence factor and is hypothesized to play a role in C. trachomatis' ability to invade and grow within epithelial cells in a human host. C. trachomatis L2 Tarp harbors five unique protein domains which include the Phosphorylation Domain, the Proline Rich Domain, …


Characterization Of Hemerythrin-Like Protein Rv2633c, Michelle D. Cherne Jan 2016

Characterization Of Hemerythrin-Like Protein Rv2633c, Michelle D. Cherne

Honors Undergraduate Theses

Hemerythrin-like protein Rv2633c is a small 18 kDa protein that is expressed in Mycobacterium tuberculosis (Mtb). Sequence analysis of Rv2633c predicts the presence of a hemerythrin-like domain, which binds dioxygen using a µ-oxo-bridge (Fe-O-Fe), rather than a heme group. Though it is noticeably upregulated during macrophage infection and during in vitro acidification, the role of Rv2633c in Mtb survival has yet to be elucidated. This project aims to characterize the function of Rv2633c by studying the in vitro response of the recombinant protein to conditions present in the macrophage lysosome, such as reduced oxygen levels or the …


Aptameric Sensors: In Vitro Selection Of Dna That Binds Bromocresol Purple, Derek B. Miller Jan 2016

Aptameric Sensors: In Vitro Selection Of Dna That Binds Bromocresol Purple, Derek B. Miller

Honors Undergraduate Theses

Aptamers being used as sensors is an emerging field that has capabilities of being tomorrow’s diagnostic tools. As aptameric sensors have become more popular, their visualization systems have been limited. The majority of today’s aptameric sensors require expensive machinery such as a fluorometer in order to visualize results. We propose a system that will cut the need for instrumentation and be detected via the naked eye. With the selection of an aptamer to bind the pH indicating dye bromocresol purple (BCP) this may be achieved. When rendered active, the binding towards BCP will facilitate a color change from yellow to …


The Role Of The Intermembrane Domain Of Mulan In Mitophagy And Cell Death, Jared M. Herbert Jan 2016

The Role Of The Intermembrane Domain Of Mulan In Mitophagy And Cell Death, Jared M. Herbert

Honors Undergraduate Theses

Mulan is an E3 ubiquitin ligase and an E3 SUMO ligase embedded in the outer mitochondrial membrane. Mulan plays a major role in various cell processes including cell growth, mitophagy, apoptosis, and mitochondrial dynamics. In addition, its deregulation is involved in the development and progression of several human disorders such as neurodegeneration and heart disease. There are two main discernible domains in Mulan: a large cytoplasmic domain that encodes the RING-finger motif and carries out the catalytic activity of the protein; the second domain of Mulan is exposed to the intermembrane space of mitochondria, and its function remains unknown. This …