Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 59

Full-Text Articles in Molecular Biology

Role Of Micrornas In Intestinal Inflammation And Barrier Homeostasis After Alcohol And Burn Injury, Caroline J. Herrnreiter Jan 2023

Role Of Micrornas In Intestinal Inflammation And Barrier Homeostasis After Alcohol And Burn Injury, Caroline J. Herrnreiter

Dissertations

MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression. Within the intestinal epithelium, miRNAs play a critical role in gut homeostasis and aberrant miRNA expression has been implicated in various disorders associated with intestinal inflammation and barrier disruption. In this study, we sought to profile changes in intestinal epithelial cell miRNA expression after alcohol and burn injury and elucidate their impact on inflammation and barrier integrity. In a more targeted approach, we began by focusing on anti-inflammatory miRNAs that, when downregulated, could exacerbate inflammation and result in intestinal barrier disruption. Using a mouse model of acute ethanol intoxication …


Characterization Of The Full-Length Bag3 Protein And Stress Induced Formation Of Bag3-Z, Ahmed Gamal Abdalla Zied Jan 2023

Characterization Of The Full-Length Bag3 Protein And Stress Induced Formation Of Bag3-Z, Ahmed Gamal Abdalla Zied

Master's Theses

Bcl2-associated athanogene-3 (BAG3) is a pro-autophagy co-chaperone that we havepreviously shown localizes to the cardiac sarcomere and is critical for proteostasis and maintenance of normal sarcomeric function. Indeed, BAG3 loss in heart failure (HF) results in accumulation of ubiquitinated sarcomeric proteins, and depressed maximum force generating capacity (Fmax). However, how BAG3 is regulated in the cell is not well understood, with uncertainty about its structure and proteoforms. During our analysis of human heart tissue, BAG3 appears as a “doublet”, with one band at 74 kDa (BAG3-Z) and a second at a higher 85 kDa (BAG3-FL). Previous studies hypothesized the full-length …


Dynamic Control Of The Cardiac Calcium Pump, Sean Robert Cleary Jan 2023

Dynamic Control Of The Cardiac Calcium Pump, Sean Robert Cleary

Dissertations

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ into the endoplasmic reticulum of cells to establish a reservoir for Ca2+ signaling. In the heart, the activity of this transporter is tightly controlled via direct interactions with two competing regulatory micropeptides: phospholamban (PLB) and dwarf open reading frame (DWORF). PLB inhibits SERCA, while DWORF activates SERCA. These competing interactions determine cardiac performance by modulating the Ca2+ signals that drive the contraction/relaxation cycle. Previous studies indicated these SERCA-micropeptide interactions are Ca2+-sensitive; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. Here, FRET-microscopy demonstrated that this …


The Roles Of A Probiotic Exopolysaccharide In Breast Cancer, Mai Rachel Nguyen Oct 2022

The Roles Of A Probiotic Exopolysaccharide In Breast Cancer, Mai Rachel Nguyen

Dissertations

breast cancer, exopolysaccharide, probiotic


Function Of Mllt3 In Liver Metabolism, Grace Ann Hammack Jan 2021

Function Of Mllt3 In Liver Metabolism, Grace Ann Hammack

Master's Theses

The chromatin regulator MLLT3 recognizes target genes through the YEATS domain that identifies post-translationally modified histones, with preference for crotonyl and acetyl marks, and recruits different multiprotein effector complexes through its C-terminal domain to target genes. To study the role of MLLT3 in gene regulation, the Zeleznik-Le and Hemenway labs developed Mllt3 whole-body knockout (Mllt3;Rosa26-CreERT2) mice. These mice have a hematopoietic stem cell phenotype and an unexpected obesity and hepatic steatosis phenotype. It was unknown whether these phenotypes were from liver intrinsic effects or influenced by other parts of the body. To study this fatty liver phenotype further, Mllt3;Alb-Cre were …


Beta-Adrenergic Receptor Mediated Transcriptional Dysregulation In Hematopoeitc Stem And Progenitor Cells Leads To Bone Marrow Erythroid Suppresion In Multiple Myeloma Patients - Ex Vivo Investigations, Vimal Ravi Subramaniam Jan 2021

Beta-Adrenergic Receptor Mediated Transcriptional Dysregulation In Hematopoeitc Stem And Progenitor Cells Leads To Bone Marrow Erythroid Suppresion In Multiple Myeloma Patients - Ex Vivo Investigations, Vimal Ravi Subramaniam

Master's Theses

The sympathetic nervous system (SNS) regulates our body’s involuntary response to stress or harm. Once activated, it releases hormones and neurotransmitters known as catecholamines throughout the body to mediate its recovery. The catecholamines bind to adrenergic receptors located on various cells in a process designated as adrenergic signaling to elicit this response. This process is not always to our benefit. Adverse symptoms such as anemia can result due to adrenergic signaling. Our laboratory previously showed that burn injury triggers adrenergic receptor stimulation resulting in anemia induced by diminished erythropoiesis. The development of anemia in these studies was found to be …


Mllt3 Regulates Expression Of Genes Critical To Liver Metabolic Homeostasis, Jonathan Richard Dixit Jan 2019

Mllt3 Regulates Expression Of Genes Critical To Liver Metabolic Homeostasis, Jonathan Richard Dixit

Master's Theses

Hepatic steatosis (fatty liver) is increasingly prevalent in the US, and is characterized by triglyceride accumulation within hepatocytes. This is a direct result of an imbalance between lipid import, export, de novo lipogenesis, and beta oxidation. Hepatic steatosis can also progress to nonalcoholic steatohepatitis (NASH) which is characterized by increased hepatocyte damage, inflammation, and fibrosis. Further progression can lead to liver failure or hepatocellular carcinoma, requiring liver transplant or causing death. Our lab recently created Mllt3 conditional whole body knockout mice. These mice developed hepatic steatosis and NASH following Mllt3 deletion. MLLT3 is a master gene regulator that is part …


A Discrete Loop In Serca N-Domain Plays A Role In Serca Headpiece Dynamics And Function, Olga N. Raguimova Jan 2018

A Discrete Loop In Serca N-Domain Plays A Role In Serca Headpiece Dynamics And Function, Olga N. Raguimova

Dissertations

The sarco/endoplasmic reticulum calcium ATPase (SERCA) is the major regulator of Ca2+ levels in the cell. Deficient calcium handling in the heart has been linked to heart failure, a leading cause of death in developed countries. As of today, targeting SERCA to enhance cardiac function has not been successful due to lack of details about SERCA structural dynamics during Ca2+ transport.

In my research, I utilized MD simulations and variety of physical assays to determine the role of Nβ5-β6 loop in regulation of SERCA structural dynamics during Ca2+ transport. Previous MD simulations by our lab predicted that the Nβ5-β6 loop …


Characterizing The Requirement Of The Cmi/Trr Compass-Like Complex During Drosophila Development, Timothy Nickels Jan 2018

Characterizing The Requirement Of The Cmi/Trr Compass-Like Complex During Drosophila Development, Timothy Nickels

Master's Theses

The MLR family of COMPASS-like complexes are histone methyltransferase complexes that are associated with the activation of gene enhancers. In D. melanogaster, Cara mitad (Cmi, also known as Lpt) and Trithorax related (Trr) are central subunits of a complex orthologous to mammalian Lysine methyltransferase 2 C and D (KMT2C and KMT2D, also known as MLL3 and MLL2/4) that catalyze H3K4 monomethylation. Previous studies have demonstrated that mutations in these genes are associated with cancer and developmental disorders, but the mechanisms by which these alterations contribute to disease states are unknown. The Cmi-containing COMPASS-like complex and orthologous vertebrate complexes have been …


Inhibition Of Mutant Egfr In Nsclc Promotes Endothelin-1-Mediated Nsclc Disease Progression, Stephen Ollosi Jan 2018

Inhibition Of Mutant Egfr In Nsclc Promotes Endothelin-1-Mediated Nsclc Disease Progression, Stephen Ollosi

Master's Theses

Angiogenesis in NSCLC has been identified as important therapeutic target in combination with EGFR TKIs. However, only small incremental advancements have been made for the use of angiogenesis inhibitors in NSCLC and it remains elusive why the inhibition of VEGF-mediated neovascularization is not therapeutically efficacious. I present experimental evidence that a subpopulation of NSCLC cells with EGFR TKI-induced EMT contributes toward the attenuation of the response to EGFR TKI therapy. One of the hallmarks of cancer is heterogeneity and I have previously demonstrated that tumor heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations gives rise to divergent resistance …


Potential Efficacy Of Targeting Mll1 In Breast Cancer, Austin Gable Holmes Jan 2017

Potential Efficacy Of Targeting Mll1 In Breast Cancer, Austin Gable Holmes

Master's Theses

In 2017, it is estimated that breast cancer will be the most prevalent newly diagnosed cancer in females, at 30% in the U.S. alone1. From the early 1990s to 2014 the death rate in females from breast cancer has dropped by 10% but still stands as the second highest cancer related death in females in the U.S.2. One of the biggest hurdles in breast cancer research is disease heterogeneity. New mechanisms of disease development and progression are encountered frequently. One mechanism studied in the past decades is epigenetics. It has been theorized that the cancer epigenome can maintain an abnormal …


Role Of Pkc Delta In Uv Radiation Dna Damage Repair, Gargi Patil Jan 2016

Role Of Pkc Delta In Uv Radiation Dna Damage Repair, Gargi Patil

Master's Theses

DNA damage caused by ultraviolet radiation (UV), such as cyclobutane pyrimidine dimers (CPD), is repaired by the nucleotide excision repair (NER) pathway. When NER is defective, DNA damage is not repaired, leading to mutations and skin cancer. After DNA damage, the cell cycle is halted at various checkpoints to allow time for repair of the damage and maintain genomic integrity, however little is known about the coordination between NER DNA damage repair and cell cycle halting at checkpoints after DNA damage. Protein kinase C δ (PKCδ) plays major role in apoptosis and maintains the G2/M checkpoint in response to UV …


A Bioluminescence Sensor Of Nlrp3 Inflammasome Activation, Michael Alexander Winek Jan 2016

A Bioluminescence Sensor Of Nlrp3 Inflammasome Activation, Michael Alexander Winek

Master's Theses

The innate immune system is many organisms first line of defense against pathogenic insult or tissue damage. This defense strategy is intent on restoring homeostasis upon perturbation. Upon activation of the innate immune system in humans, an oligomeric protein complex termed the “Inflammasome” forms in myeloid cells. The canonical output of activation of any subset of inflammasome is Caspase-1-mediated secretion of pro-inflammatory cytokines IL1β and IL18. Chronic or uncontrolled inflammasome activation is at the core of myriad economically burdening diseases. In many of these diseases, endogenous factors chronically engage the innate immune system. To study these diseases in in vivo, …


The Role Of C-Abl Kinase In Hcc Development, Lennox Chitsike Jan 2016

The Role Of C-Abl Kinase In Hcc Development, Lennox Chitsike

Master's Theses

Hepatocellular Carcinoma is the second most lethal cancer after pancreatic cancer. Unresectable HCC tumors carry a poor prognosis and few treatment options are available. The dismal prognosis is mainly due to limited therapy options and molecularly targeted therapy is deemed as solution. Here, we report a novel role of c-Abl in HCC development. We provide evidence of c-Abl activation in human HCC samples compared to normal liver. Using genetic and pharmacological tools, we show that c-Abl plays a vital role in HCC progression in vitro and in vivo. We have identified Axl as an effector in processes mediated by c-Abl. …


The Role Of Foxo Transcription Factors In Alcohol-Induced Deficient Fracture Repair, Philip M. Roper Jan 2016

The Role Of Foxo Transcription Factors In Alcohol-Induced Deficient Fracture Repair, Philip M. Roper

Dissertations

Proper and complete repair of a bone fracture is essential in quality of life maintenance, but poor healing and fracture malunion are still medically and socially relevant problems. Alcohol abuse impairs normal fracture healing, leading to delayed or incomplete union. This dissertation aims to clarify mechanisms behind this alcohol-induced impaired healing, thereby elucidating potential methods of intervention.

Alcohol-induced oxidative stress has been linked to many morbidities associated with alcohol abuse. This dissertation elucidates a potential mechanism through which alcohol inhibits fracture healing by increasing oxidative stress. Using a rodent model, I found that alcohol exposure decreases fracture callus formation and …


The Role Of Microrna In Cardioprotection: Ischemic Preconditioning And Mesenchymal Stem Cell Paracrine Effects, Kristin Luther Jan 2016

The Role Of Microrna In Cardioprotection: Ischemic Preconditioning And Mesenchymal Stem Cell Paracrine Effects, Kristin Luther

Dissertations

Changes in gene expression and protein levels are an important aspect of cardioprotection in which short non-coding RNA known as miRNA may play a key regulatory role. We investigated the functions of several miRNAs in the context of two cardioprotective stimuli, ischemic preconditioning (IPC) and mesenchymal stem cell (MSC) paracrine effects. We hypothesized that downregulation of a set of miRNAs (miR-148a/b, miR-30b, and let-7a*) augments expression of protective heat shock proteins during IPC, and that MSC exosomes transfer miR-21 to cardiomyocytes, resulting in downregulation of pro-apoptotic genes and reduction of infarct size.

IPC increased the level of Hsp70, Hsp90, and …


Emetine As An Anti-Cancer Therapeutic In Bladder Cancer, Valerie Davidson Jan 2015

Emetine As An Anti-Cancer Therapeutic In Bladder Cancer, Valerie Davidson

Master's Theses

Bladder cancer is a serious health concern among the older population, as it is responsible for thousands of deaths annually in the United States. Patients that are diagnosed with muscle-invasive disease have a 5-year survival rate of only 20 percent. Additionally, muscle-invasive disease has a high metastatic potential; half of all patients develop metastatic disease within 3 years. Patients with muscle-invasive disease are presented with few treatment options aside from surgery. The current standard of care is a chemotherapeutic combination therapy of cisplatin and gemcitabine. This therapy is highly toxic, and due to the high instance of co-morbidities in these …


The Mir-17-92 Cluster Contributes To Mll Leukemia Development Through The Repression Of The Meis1 Competitor Pknox1, Yousaf Anwar Mian Jan 2015

The Mir-17-92 Cluster Contributes To Mll Leukemia Development Through The Repression Of The Meis1 Competitor Pknox1, Yousaf Anwar Mian

Dissertations

Mixed lineage leukemias have a relatively poor prognosis and arise as a result of translocations between the MLL gene and one of multiple partner genes. Downstream targets of MLL are aberrantly upregulated and include the developmentally important HOX genes and MEIS1, as well as multiple miRNAs, including the miR-17-92 cluster and miR-196b. Here I utilize custom anti-miRNA oligonucleotides to examine the contribution of specific miRNAs to MLL leukemias both as individual miRNAs and in cooperation with other miRNAs. Combinatorial treatment with antagomirs against miR-17 and miR-19a of the miR-17-92 cluster dramatically reduces colony forming ability of MLL-fusion containing cell lines …


The Endosomal Sorting Complex Required For Transport Pathway Mediates Chemokine Receptor Cxcr4 Akt Signaling By Promoting Lysosomal Degradation Of Mtor Antagonist Deptor, Rita Ramkaran Verma Jan 2015

The Endosomal Sorting Complex Required For Transport Pathway Mediates Chemokine Receptor Cxcr4 Akt Signaling By Promoting Lysosomal Degradation Of Mtor Antagonist Deptor, Rita Ramkaran Verma

Dissertations

The chemokine receptor CXCR4 is a member of the G protein-coupled receptor (GPCR) family. The cognate ligand for CXCR4 is the C-X-C chemokine known as CXCL12. The CXCL12/CXCR4 signaling axis is essential for a number of developmental processes including organogenesis, vascularization of the GI tract and hematopoiesis. Dysregulated CXCR4 signaling is also implicated in a variety of pathological conditions such as WHIM (Warts, Hypogammaglobunemia, Infections and myelokathexis) syndrome, cardiovascular disease and cancer. Despite its role in several pathologies, the molecular mechanisms mediating CXCR4 signaling are not completely understood. Upon CXCL12 binding to CXCR4, several signaling pathways are activated including the …


Eliminating Acute Myeloid Leukemia Stem Cells By Targeting The Niche Microenviromnent: Co-Inhibition Of Tnf/Il1- Jnk And Nf-Κb, Andrew Volk Jan 2015

Eliminating Acute Myeloid Leukemia Stem Cells By Targeting The Niche Microenviromnent: Co-Inhibition Of Tnf/Il1- Jnk And Nf-Κb, Andrew Volk

Dissertations

Leukemia Stem Cells (LSCs) from Acute Myeloid Leukemia (AML) require the activity of the transcription factor NF-kB to maintain stemness and drive tumor formation. Blocking NF-kB can preferentially eliminate LSCs in vitro with minimal effects on healthy Hematopoietic Stem and Progenitor Cells (HSPCs), making NF-kB a compelling target for anti-leukemia therapies. However, blocking NF-kB in vivo can only extend survival for a short period of time before transplanted mice succumb to the disease. I propose this is due to components of the in vivo niche supporting LSC survival and compensating for the inhibition of NF-kB.

I observed patients with partially …


Investigating The Role Of The Pgf2 Alpha/Calcineurin-Signaling Pathway In The Regulation Of Adipogenesis, Damodaran Annamalai Jan 2014

Investigating The Role Of The Pgf2 Alpha/Calcineurin-Signaling Pathway In The Regulation Of Adipogenesis, Damodaran Annamalai

Dissertations

Prostaglandin F2α (PGF2α) is a potent physiological inhibitor of adipocyte differentiation. In previous studies, we demonstrated that PGF2α inhibits adipogenesis via activation of the calcium-regulated protein phosphatase, calcineurin. In this current study, we have now extended these findings to identify the IL-11 cytokine and the Nurr1 orphan nuclear hormone receptor as functionally important downstream transcriptional targets of the PGF2α/calcineurin-pathway involved in the inhibition of adipocyte differentiation. In the case of IL-11, we show that this cytokine acts in an autocrine fashion to inhibit adipogenesis via the essential actions of the gp130 cytokine co-receptor signaling subunit. Further, by using a well-characterized …


The Role Of Af9 And Af9-Mediated Protein Interactions In Hematopoiesis And Leukemogenesis, Alyson Anne Lokken Jan 2014

The Role Of Af9 And Af9-Mediated Protein Interactions In Hematopoiesis And Leukemogenesis, Alyson Anne Lokken

Dissertations

The AF9 protein is one of the most common chromosomal translocation partners of the MLL gene in MLL leukemia. Wild-type AF9 is a member of the pTEFb transcription elongation complex, and interacts with gene regulatory proteins such as AF4/AF5q31, DOT1L, Pc3/CBX8 and BCoR. These interactions are retained in the oncogenic MLL-AF9 fusion protein, and may be required for leukemic transformation.

Using bone marrow progenitor cells isolated from conditional Af9 knockout mice, we examined in vitro differentiation of hematopoietic progenitor cells to the erythroid, myeloid and megakaryocytic lineages in the presence or absence of Af9. Based on previously published studies, we …


Molecular Functions Of Mll Phd3 Binding To Its Ligands Cyp33 And H3k4me3, Gayathree Raman Jan 2013

Molecular Functions Of Mll Phd3 Binding To Its Ligands Cyp33 And H3k4me3, Gayathree Raman

Dissertations

Mixed Lineage Leukemia protein (MLL) is required for proper embryonic development, and hematopoiesis. It is a SET domain containing histone methyl transferase that trimethylates histone H3 on lysine 4 (H3K4Me3), a histone modification that correlates with active transcription. The 3rd PHD finger of MLL binds to H3K4me3. Thus MLL is a "writer" with an embedded "reader" for H3K4Me3. Cyp33 is another known ligand of MLL PHD3. Over expression of Cyp33 results in transcriptional repression of MLL target genes.

The aim of this study is to determine the biological function of MLL PHD3 binding to H3K4Me3 or Cyp33. Cyp33 binding to …


Targeting The Notch-1/Igf-1r/Akt Axis In At Orthotopic Model Of Advanced Non-Small Cell Lung Cancer, Shuang Liang Jan 2013

Targeting The Notch-1/Igf-1r/Akt Axis In At Orthotopic Model Of Advanced Non-Small Cell Lung Cancer, Shuang Liang

Dissertations

Lung cancer is the leading cause of cancer death in the U.S. and worldwide. The most frequent type of lung cancer is non-small cell lung cancer (NSCLC). NSCLC is mostly diagnosed at advanced stages (stage IIIB 18% of cases, stage IV 40% of cases) due to the lack of effective early detection methods. Thus, the discovery of alternative therapeutic strategies is of extreme importance.

Others and we have previously found that Notch signaling plays a crucial role in NSCLC. Our preliminary results indicate that Notch-1 provides necessary survival signals to NSCLC cells by positively regulating IGF-1R to activate the Akt-1 …


Novel Role Of Erbb-2 In Inhibition Of Jagged-1-Mediated Trans-Activation Of Notch In Breast Cancer, Kinnari Pandya Jan 2013

Novel Role Of Erbb-2 In Inhibition Of Jagged-1-Mediated Trans-Activation Of Notch In Breast Cancer, Kinnari Pandya

Dissertations

The ErbB-2 gene is amplified and the resulting protein product overexpressed in 15-30% of breast tumors, and associated with aggressive behavior and poor overall survival. Currently, there are two FDA approved therapies targeting ErbB-2 for the treatment of ErbB-2 positive breast cancer: trastuzumab, a humanized monoclonal antibody is directed against the extracellular domain of ErbB-2 and lapatinib, a dual EGFR/ErbB-2 tyrosine kinase inhibitor. Unfortunately, anti-ErbB-2 therapy resistance remains a major problem in metastatic breast cancer. Our data suggested that gene amplification or overexpression of ErbB-2 inhibits Notch-1 transcriptional activity and trastuzumab or lapatinib increased

Notch-1 transcriptional activity. Furthermore, Notch-1 is …


Significance Of Protein Interactions In Mediating Af9 Function, Bhavna Malik Jan 2013

Significance Of Protein Interactions In Mediating Af9 Function, Bhavna Malik

Dissertations

Rearrangements of the MLL gene at chromosome band 11q23 have been associated with a heterogeneous group of lymphoid, myeloid and mixed lineage leukemias. MLL rearrangements occur approximately in 70% of infant leukemias and are also common in therapy-related leukemias where patients were previously treated with topoisomerase II inhibitors. Unfortunately, these patients have a poor prognosis. MLL gene rearrangements give rise to chimeric proteins that contain the N-terminal portion of MLL fused to the C-terminal portion of over 50 different fusion partners. The chimeric proteins cause constitutive expression of some MLL target genes such as HOXA9 and MEIS1, and enhanced proliferation …


A Study Of The Therapeutic Potential Of Af4 Mimetic Peptides, Nisha N. Barretto Jan 2013

A Study Of The Therapeutic Potential Of Af4 Mimetic Peptides, Nisha N. Barretto

Dissertations

Mixed lineage leukemias (MLL) are a group of acute and aggressive leukemias. They account for over 70% of infant leukemias, and 10% of acute adult leukemias. Pediatric ALL and therapy related MLL leukemias carry poor prognosis in spite of several advancement in the field of leukemia research. Therefore, new therapies for MLL leukemias are needed.

Majority of MLL leukemias arise due to the balanced translocations of the MLL gene. As a result of these translocations, chimeric MLL fusion proteins are expressed. The most frequently occurring MLL fusion proteins are known to aberrantly recruit the super elongation complex (SEC) resulting in …


The Role Of Cyp33 In Mll Mediated Gene Repression, Steven D. Poppen Jan 2012

The Role Of Cyp33 In Mll Mediated Gene Repression, Steven D. Poppen

Dissertations

Mixed Lineage Leukemia (MLL) is a multidomain protein whose gene is translocated in a subset of AML leukemias. Translocation of the MLL gene is present in approximately five percent of adult acute leukemias and ten percent of pediatric leukemias (Daser, A 2004, Look, A 1997, Huret, J 2001) Patients presenting in the clinic at the time of diagnosis with an MLL fusion have been shown to respond poorly to treatment and have a worse prognosis than matched wild type MLL patients (Rubnitz, J 1994, Rubnitz, J 1999). Novel therapies therefore are needed in order to more effectively treat patients with …


Molecular Mechanisms Regulating Chemokine Receptor Cxcr4 Signaling And Trafficking, Rohit Malik Jan 2012

Molecular Mechanisms Regulating Chemokine Receptor Cxcr4 Signaling And Trafficking, Rohit Malik

Dissertations

CXCR4 is a G protein-coupled receptor (GPCR) that binds to the chemokine, stromal cell-derived factor-1 (SDF-1alpha; a.k.a. CXCL12). The SDF-1alpha/CXCR4 signaling axis plays an essential role during embryogenesis in the development of the heart, brain and vasculature and in the adult mediating immune cell trafficking and stem cell homing to the bone marrow. Dysregulation of SDF-1alpha/CXCR4 signaling is linked to several pathological conditions, including cardiovascular disease, immunological disorders as well as cancer growth and metastasis. However, the mechanisms that govern CXCR4 signaling remain poorly understood. In this dissertation project, we attempt to further our understanding of the molecular mechanisms that …


Determination Of An Interaction Between Nipped B-Like Protein And Mll, Adam Robert Marek Jan 2012

Determination Of An Interaction Between Nipped B-Like Protein And Mll, Adam Robert Marek

Master's Theses

The Mixed Lineage Leukemia (MLL) protein serves as a positive transcriptional regulator during hematopoietic and embryonic development. The MLL gene can undergo chromosomal translocations producing leukemia-causing fusions that retain the MLL amino-terminus, including the repression domain. A recent yeast two-hybrid screening used the MLL repression domain as bait and yielded nine positive clones of Nipped B-like (NIPBL).

NIPBL is a crucial member of the cohesin complex, which functions in the segregation of sister chromatids during cell division. However, recent evidence suggests the cohesin complex can also function as a transcriptional regulator.

In this study, we wanted to confirm this interaction …