Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti Sep 2021

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti

Dissertations, Theses, and Capstone Projects

Photoreceptors play a crucial role in signal transduction as specialized proteins which sense light as environmental stimuli and transduce the signal to control of downstream functions. Here we focus our attention on one class of these proteins, the Light-Oxygen-Voltage (LOV) domain, which is sensitive to blue light via an internally-bound flavin chromophore. Since their initial discovery in plant phototropins, many details of their photochemistry, chromophore interactions, and use with a diverse set of functional effectors have been described. However, several key details, especially a comprehensive understanding of signaling mechanism and its regulation, still remain elusive due in part to the …


Oxydifficidin-Producing Bacillus Presents Novel Antimicrobial Activity Against Neisseria Gonorrhoeae Involving The Deda Protein, Jingbo Kan Sep 2021

Oxydifficidin-Producing Bacillus Presents Novel Antimicrobial Activity Against Neisseria Gonorrhoeae Involving The Deda Protein, Jingbo Kan

Dissertations, Theses, and Capstone Projects

Bacterial human pathogens cause severe infectious diseases which are the second most common cause of death next to cancer and cardiovascular diseases in the world, especially in developing countries. Gonorrhea particularly, is the second most common sexually transmitted infection (STI) which is caused by the microorganism Neisseria gonorrhoeae (GC). Centers for Disease Control and Prevention (CDC) estimates that more than 1.6 million new gonorrhea cases emerged in USA in 2018 (“Detailed STD Facts - Gonorrhea” n.d.). Also, the WHO (World Health Organization) shows that gonorrhea is the most antibiotic resistant STI (“PAHO/WHO | Gonorrhea” n.d.), highlighting the shortage of efficient …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel Feb 2021

Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel

Dissertations, Theses, and Capstone Projects

During unfavorable cellular conditions (e.g., tumor hypoxia, viral infection, nutrient deprivation, etc.), the canonical, cap-dependent translation initiation pathway in human cells is suppressed by sequestration of the cap-binding protein, eukaryotic initiation factor(eIF) 4E, by 4E-binding proteins. Circumvention of cap-dependent translation shutdown has been linked to tumor development and cancer progression. The stress-induced repression of cap-dependent translation has also been correlated with increased eIF4GI and its homolog, Death Associated Protein 5 (DAP5) expression levels, suggesting these factors have a role in cap-independent translation. Despite several evidence pointing towards a link upregulation of eIF4GI and /DAP5 levels during stress conditions, and the …