Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Immunology and Infectious Disease

Wayne State University

Wayne State University Theses

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Imbalance Of Uracil Dna Glycosylase And Activation-Induced Cytidine Deaminase Expression In Folate Depleted Human Lymphoblastoids, Elizabeth Zanley Jan 2019

Imbalance Of Uracil Dna Glycosylase And Activation-Induced Cytidine Deaminase Expression In Folate Depleted Human Lymphoblastoids, Elizabeth Zanley

Wayne State University Theses

Background: The DNA base excision repair (BER) pathway is responsible for processing of genomic uracil lesions however, in some tissue types the excisional and gap-filling steps performed by UNG2 and POLβ, respectively, are impaired by folate deficiency in human and murine models in vitro. Genomic uracil damage can be acquired by inadequate conversion of uracil to thymine nucleotide precursors resulting from insufficient folate cofactors, or through activation induced cytosine deaminase (AID) activity during antibody diversification in B-cells in the context of adaptive immunity. The immunoglobulin (Ig) diversification methods in B-cells depend on the coordinated interaction between AID and UNG2, and …


Modulation Of Anti-Tumor Immune Response By Tgf-Β-Inducible Early Gene 1 (Tieg1), Andi Cani Jan 2012

Modulation Of Anti-Tumor Immune Response By Tgf-Β-Inducible Early Gene 1 (Tieg1), Andi Cani

Wayne State University Theses

Cancer immunotherapy has had limited clinical efficacy partly because regulatory T cells (Treg) suppress the immune response to tumor-associated antigens. Inducible regulatory T cells (iTreg), which are converted from naïve CD4 T cells by TGF-β, an abundant cytokine in the tumor microenvironment, may contribute to this immune suppression. Induction of Foxp3 by TGF-β is mediated by the transcription factor TIEG1 and abrogation of this protein prevents Foxp3 expression. We are testing the hypothesis that blockade of TIEG1 to prevent iTreg conversion will enhance immune response in DNA vaccination to the tumor associated antigen Her-2. Wild type and TIEG1 knockout mice …