Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Biology

Modulation Of Glucose Homeostasis By Nucleotide P2y2 Receptor And Biological Sex, Hailee Anne Marino Aug 2021

Modulation Of Glucose Homeostasis By Nucleotide P2y2 Receptor And Biological Sex, Hailee Anne Marino

MSU Graduate Theses

Recent insights into the pathological role of Nucleotide P2Y2 receptor suggest P2Y2R involvement in high fat diet-induced obesity and potentiates insulin resistance. However, these recent insights do not demonstrate how P2Y2R modulates glucose homeostasis under physiological conditions. Further, it remains unknown how sex biological factors influence P2Y2R receptor signaling in the regulation of glucose homeostasis. The research objective for the present study is to elucidate the novel roles of P2Y2 in fasting blood glucose and glucose tolerance (basal insulin sensitivity) under resting conditions in males and females. We expected that under physiological …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Characterizing Aft1/2-Grx3/4 Interaction And The Role Of Bol2 During Iron Regulation In Saccharomyces Cerevisiae, William Rivers Apr 2019

Characterizing Aft1/2-Grx3/4 Interaction And The Role Of Bol2 During Iron Regulation In Saccharomyces Cerevisiae, William Rivers

Senior Theses

Iron dysregulation has been linked to a variety of human diseases, such as anemia, Friedreich’s ataxia, X-linked sideroblastic anemia, sideroblastic-like microcytic anemia, and myopathy. Thus, it is vitally important to understand the mechanisms for regulating intracellular iron. Here, we use fluorescence microscopy techniques in live cells to study interactions of the yeast proteins Grx3/4, Aft1/2, and Bol2, which have been shown to be involved in turning off iron import when the cell has adequate iron. Modified versions of genes encoding these proteins have been incorporated into several yeast backgrounds to use fluorescence to monitor interactions under varying iron levels.


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Bayesian Analytical Approaches For Metabolomics : A Novel Method For Molecular Structure-Informed Metabolite Interaction Modeling, A Novel Diagnostic Model For Differentiating Myocardial Infarction Type, And Approaches For Compound Identification Given Mass Spectrometry Data., Patrick J. Trainor Aug 2018

Bayesian Analytical Approaches For Metabolomics : A Novel Method For Molecular Structure-Informed Metabolite Interaction Modeling, A Novel Diagnostic Model For Differentiating Myocardial Infarction Type, And Approaches For Compound Identification Given Mass Spectrometry Data., Patrick J. Trainor

Electronic Theses and Dissertations

Metabolomics, the study of small molecules in biological systems, has enjoyed great success in enabling researchers to examine disease-associated metabolic dysregulation and has been utilized for the discovery biomarkers of disease and phenotypic states. In spite of recent technological advances in the analytical platforms utilized in metabolomics and the proliferation of tools for the analysis of metabolomics data, significant challenges in metabolomics data analyses remain. In this dissertation, we present three of these challenges and Bayesian methodological solutions for each. In the first part we develop a new methodology to serve a basis for making higher order inferences in metabolomics, …


Characterization Of Ghrelin O-Acyltransferase Active Site, Leslie Patton May 2015

Characterization Of Ghrelin O-Acyltransferase Active Site, Leslie Patton

Honors Capstone Projects - All

Ghrelin, first discovered in 1999, is a 28-amino acid peptide hormone involved in the regulation of appetite, insulin secretion and sensitivity, and many neurological effects such as learning, memory, and depression.1-6 Ghrelin has been identified to have a unique posttranslational octanoylation carried out by the enzyme ghrelin O-acyltransferase (GOAT). This distinctive modification is a point of interest in studying GOAT whereby blocking the acylation of the ghrelin could potentially halt the activity of the peptide hormone and provide a means of treating obesity, diabetes, and other diseases affected by ghrelin levels. The duration of my project involved working …


Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood Jan 2013

Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood

Theses and Dissertations--Molecular and Cellular Biochemistry

Lafora disease (LD) is a rare yet invariably fatal form of epilepsy characterized by progressive degeneration of the central nervous and motor systems and accumulation of insoluble glucans within cells. LD results from mutation of either the phosphatase laforin, an enzyme that dephosphorylates cellular glycogen, or the E3 ubiquitin ligase malin, the binding partner of laforin. Currently, there are no therapeutic options for LD, or reported methods by which the specific activity of glucan phosphatases such as laforin can be easily measured. To facilitate our translational studies, we developed an assay with which the glucan phosphatase activity of laforin as …


Regulation Of Protein Degradation In The Heart By Amp-Activated Protein Kinase, Kedryn K. Baskin May 2012

Regulation Of Protein Degradation In The Heart By Amp-Activated Protein Kinase, Kedryn K. Baskin

Dissertations & Theses (Open Access)

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of …