Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Biology

C1qbp Inhibits Dux4-Dependent Gene Activation And Can Be Targeted With 4mu, Alec M. Desimone, Genila Bibat, Kathryn Wagner, Guido Stadler, Woodring E. Wright, John D. Leszyk, Charles P. Emerson Jr. May 2017

C1qbp Inhibits Dux4-Dependent Gene Activation And Can Be Targeted With 4mu, Alec M. Desimone, Genila Bibat, Kathryn Wagner, Guido Stadler, Woodring E. Wright, John D. Leszyk, Charles P. Emerson Jr.

UMass Center for Clinical and Translational Science Research Retreat

FSHD is linked to the misexpression of the DUX4 gene contained within the D4Z4 repeat array on chromosome 4. The gene encodes the DUX4 protein, a cytotoxic transcription factor that presumably causes the symptoms of the disease. However, individuals have been identified who express DUX4 in their muscle biopsies, but who remain asymptomatic, suggesting that there are other factors that modify FSHD penetrance or severity. We hypothesized that an FSHD-modifying factor would physically interact with DUX4, and we took a proteomic approach to identify DUX4-interacting proteins. We identified the multifunctional C1QBP protein as one such factor. C1QBP is known to ...


Structural And Molecular Analysis Of A Protective Epitope Of Lyme Disease Antigen Ospa And Antibody Interactions, Shivender Shandilya, Nese Kurt Yilmaz, Ejemel Monir, Andrew Sadowski, William D. Thomas, Mark S. Klempner, Celia A. Schiffer, Yan Wang May 2016

Structural And Molecular Analysis Of A Protective Epitope Of Lyme Disease Antigen Ospa And Antibody Interactions, Shivender Shandilya, Nese Kurt Yilmaz, Ejemel Monir, Andrew Sadowski, William D. Thomas, Mark S. Klempner, Celia A. Schiffer, Yan Wang

UMass Center for Clinical and Translational Science Research Retreat

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease.

Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 based on computational predictions ...


Characterization Of Neutrophils And Macrophages From Ex Vivo Cultured Murine Bone Marrow For Morphologic Maturation And Functional Responses By Imaging Flow Cytometry, Klaudia Szymczak, Margery G.H. Pelletier, Anna M. Barbeau, Kevin O'Fallon, Peter Gaines May 2016

Characterization Of Neutrophils And Macrophages From Ex Vivo Cultured Murine Bone Marrow For Morphologic Maturation And Functional Responses By Imaging Flow Cytometry, Klaudia Szymczak, Margery G.H. Pelletier, Anna M. Barbeau, Kevin O'Fallon, Peter Gaines

UMass Center for Clinical and Translational Science Research Retreat

Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo unique nuclear morphologic changes as they mature into fully functional phagocytes. These changes include condensation of chromatin, the most pronounced exhibited by mature neutrophils. Both myeloid cells acquire multiple functions critical to their ability to kill pathogens, including phagocytosis, the production of proteolytic enzymes and reactive oxygen species (ROS), and in the case of neutrophils, release of nuclear material known as nuclear extracellular traps (NETs). Studies on these functions often rely on the use of cells acquired from mature mouse tissues, but these tend to ...


Development Of Novel Class Of Therapeutic Oligonucleotides Based On Small Molecule Screening, Julia Alterman, Hong Cao, Marie Didiot, Mehran Nikan, Matthew Hassler, Anastasia Khvorova May 2014

Development Of Novel Class Of Therapeutic Oligonucleotides Based On Small Molecule Screening, Julia Alterman, Hong Cao, Marie Didiot, Mehran Nikan, Matthew Hassler, Anastasia Khvorova

UMass Center for Clinical and Translational Science Research Retreat

Highly inefficient transit of oligonucleotides from outside cells to the intracellular compartments where functional activity of oligonucleotides takes place is the most serious limitation to the practical realization of a full potential of oligonucleotide-based therapies. Several classes of oligonucleotide therapeutics (ONT), including antisense oligonucleotides (ASO), hydrophobically modified siRNAs (hsiRNA), GalNAc-conjugated siRNAs, and LNP-formulated siRNAs have validated biological efficacy and are in clinic. In all cases, the fraction of oligonucleotides reaching the intended place of biological function is surprisingly low, with the majority of molecules being trapped in wrong cellular compartments, resulting in low efficiency and clinically limiting toxicity. We have ...


Targeted Mutagenesis Of A Therapeutic Human Monoclonal Igg1 Antibody Prevents Gelation At High Concentrations, Paul Casaz, Elisabeth N. Boucher, Rachel Wollacott, Sadettin S. Ozturk, William D. Thomas Jr., Yan Wang May 2014

Targeted Mutagenesis Of A Therapeutic Human Monoclonal Igg1 Antibody Prevents Gelation At High Concentrations, Paul Casaz, Elisabeth N. Boucher, Rachel Wollacott, Sadettin S. Ozturk, William D. Thomas Jr., Yan Wang

UMass Center for Clinical and Translational Science Research Retreat

A common challenge encountered during development of high concentration monoclonal antibody formulations is preventing self-association. Depending on the antibody and its formulation, self-association can be seen as aggregation, precipitation, opalescence or phase separation. Here we report on an unusual manifestation of self-association, formation of a semi-solid gel or “gelation”. Therapeutic monoclonal antibody C4 was isolated from human B cells based on its strong potency in neutralizing bacterial toxin in animal models. The purified antibody possessed the unusual property of forming a firm, opaque white gel when it was formulated at concentrations >40 mg/mL and the temperature was <6oC. Gel formation was reversible and was affected by salt concentration or pH, suggesting a charge interaction between IgG monomers. However, formulation optimization could not completely prevent gelation at high concentrations so a protein engineering approach was sought to resolve the problem. A comparison of the heavy and light chain amino acid sequences to consensus germline sequences revealed 16 amino acid sequence differences in the framework regions that could be involved with gelation. Restoring the C4 framework sequence to consensus germline residues by targeted mutagenesis resulted in no gel formation at 50 mg/ml at temperatures as low as 0oC. Additional genetic analysis was used to identify the key residue(s) involved in the gelation. A single substitution in the native antibody, replacing heavy chain glutamate 23 with lysine, was found sufficient to prevent gelation, while a double mutation, replacing heavy chain serine 85 and threonine 87 with arginine, increased the temperature at which gel formation initiated. These results indicate that the temperature dependence of gelation may be related to conformational changes near the charged residues or the regions interact with. Our work provided a molecular strategy that can be applied to improve the solubility of other therapeutic antibodies.


Molecular Mechanisms Of Fsh Muscular Dystrophy Pathogenesis, Peter L. Jones, Takako I. Jones May 2013

Molecular Mechanisms Of Fsh Muscular Dystrophy Pathogenesis, Peter L. Jones, Takako I. Jones

UMass Center for Clinical and Translational Science Research Retreat

Discussion of a new research initiative at UMass Medical School focused on the pathogenesis of Facioscapulohumeral Muscular Dystrophy (FSHD) and efforts towards diagnostics and therapeutics. This presentation is part of the retreat mini-symposium entitled: Neuromuscular Diseases: Pathogenesis and the Road to Therapeutics.


Dux4 Target Gene Expression In Mouse Muscle Transplanted With Muscle Cells From Fshd Patients, James A. Windelborn, Charles P. Emerson, Jr. May 2013

Dux4 Target Gene Expression In Mouse Muscle Transplanted With Muscle Cells From Fshd Patients, James A. Windelborn, Charles P. Emerson, Jr.

UMass Center for Clinical and Translational Science Research Retreat

Facioscapulohumeral Muscular Dystrophy (FSHD) is one of the most prevalent forms of muscular dystrophy. However, because of the unique nature of the genetic abnormality underlying the disease, there is currently no widely available laboratory model. In order to gain insights into FSHD molecular pathology, we developed a xenograft model by transplanting myogenic cells from patients with FSHD (4qA contractions) as well as from their unaffected relatives into the tibialis anterior muscles of immunodeficient mice. Our findings show that muscle xenografts derived from FSHD myogenic cells express Dux4 target genes, recapitulating the expression of these disease biomarkers in muscle biopsies of ...


Pathogenesis Of Atherosclerosis: Focusing On The Role Of Exercise And Flavonoids, Mahdi Garelnabi, Halleh Mahini May 2013

Pathogenesis Of Atherosclerosis: Focusing On The Role Of Exercise And Flavonoids, Mahdi Garelnabi, Halleh Mahini

UMass Center for Clinical and Translational Science Research Retreat

Atherosclerotic coronary artery disease accounts for the majority of death in the world. A number of determinants most of them associated with lifestyle starting from early childhood onwards are responsible for Cardiovascular Diseases (CVD). Some risk factors facilitate the development of atherosclerosis, while others participate in the plaques formation, resulting in the manifestation of the disease.

Objectives: In the current study we investigated the role of exercise and antioxidants intakes; specifically quercetin in mouse model. We looked into the sex responses to the quercetin intake and physical activity. We also looked into the effect of quercetin treatment on HepG2 cell ...


Activated Innate Immunity In Childhood: A Novel Treatment Target, Olga T. Hardy May 2011

Activated Innate Immunity In Childhood: A Novel Treatment Target, Olga T. Hardy

UMass Center for Clinical and Translational Science Research Retreat

Obesity is a state of chronic low grade inflammation with elevated cytokines that contribute to obesity-related co-morbidities. This presentation will include an overview of a Life Sciences Moment Fund project that examined the effects of a multi-component wellness intervention designed to increase physical activity and reduce risk for cardiometabolic disease in overweight adolescents. Selected results suggesting the potential of activated innate immunity in childhood as a novel treatment target will be emphasized.