Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Wayne State University Dissertations

Drosophila

2016

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu Jan 2016

An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu

Wayne State University Dissertations

Chromatin modification and cellular metabolism are tightly connected. The mechanism for this cross-talk, however, remains incompletely understood. SIN3 controls histone acetylation through association with the histone deacetylase RPD3. In this study, my major goal is to explore the mechanism of how SIN3 regulates cellular metabolism.

Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. In collaboration with others, I report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality, as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone …


A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi Jan 2016

A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi

Wayne State University Dissertations

In humans and fruit flies, males have one X chromosome while females have two. This imbalance in gene dosage is potentially lethal, and the process of dosage compensation corrects it. The MSL (Male Specific Lethal) complex, which is composed of five proteins and one of two functionally redundant long non-coding roX (RNA on the X) RNAs, brings about dosage compensation in Drosophila melanogaster. In fruit fly dosage compensation, all the genes on the single male X chromosome are upregulated approximately twofold, via chromatin modifications, to equalize gene dosage with the two X chromosomes of females. This process calls for highly …