Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Molecular Biology

Biophysical Properties Of Cellular Membranes In Gram-Positive Bacterial Pathogens And Their Impact On Major Physiological Attributes And Virulence Determinants, Suranjana Sen Sep 2015

Biophysical Properties Of Cellular Membranes In Gram-Positive Bacterial Pathogens And Their Impact On Major Physiological Attributes And Virulence Determinants, Suranjana Sen

Theses and Dissertations

The cytoplasmic membrane of bacterial cells, forming an essential barrier from the surroundings, is a critical component of cellular physiology ensuring proper survival and maintenance of major cellular functions. The integrity of the membrane is an important feature that plays an essential role in the transport of solutes and nutrients through active and passive pathways, functions of membrane-associated proteins, electron transport and ATP synthesis, maintaining turgor pressure and combating environmental stresses, and thus is a crucial factor of a majority of cellular adaptations. The various biophysical properties affecting the integrity of this membrane are mainly determined by the composition and …


Cell Wall Mutants In Arabidopsis Thaliana, Christy Jane Moore Jun 2015

Cell Wall Mutants In Arabidopsis Thaliana, Christy Jane Moore

Theses and Dissertations

Plant cell walls are versatile structures, playing important roles in communication, defense, organization and support. The importance of each of these functions varies by cell type, with specialized cells often utilizing one or two functions more than others. Trichomes, or leaf hairs, and hypocotyl cells for instance, exhibit distinct cell wall characteristics. Trichomes have developed very thick cell walls with several raised structures, known as papillae, on their surfaces. It is believed that these cells function in defense against predators, making it difficult to crawl on the leaf surface, and in protection against ultra violet radiation, through refraction of light …


Role Of Non-Muscle Myosin Ii And Calcium In Zebrafish Midbrain-Hindbrain Boundary Morphogenesis, Srishti Upasana Sahu May 2015

Role Of Non-Muscle Myosin Ii And Calcium In Zebrafish Midbrain-Hindbrain Boundary Morphogenesis, Srishti Upasana Sahu

Theses and Dissertations

Elucidating the molecular mechanisms that play a role in cellular morphogenesis is critical to our understanding of brain development and function. The midbrain-hindbrain boundary (MHB) is one of the first folds in the vertebrate embryonic brain and is highly conserved across species. We used the zebrafish MHB as a model for determining the molecular mechanisms that regulate these cell shape changes. Cellular morphogenesis is tightly regulated by signaling pathways that rearrange the cytoskeleton and produce mechanical forces that enable changes in cell and tissue morphology. The generation of force within a cell often depends on motor proteins, particularly non-muscle myosins …


Rheb Dynamics On Lysosomal Membranes Determines Mtorc1 Activity After Loss Of P53 Or Activation Of Ampk, Catherine M. Bell Jan 2015

Rheb Dynamics On Lysosomal Membranes Determines Mtorc1 Activity After Loss Of P53 Or Activation Of Ampk, Catherine M. Bell

Theses and Dissertations

The tumor suppressor TP53 is the most frequently altered gene in human cancers. The growth-promoting complex, mTORC1 plays a part of the oncogenic profile caused by dysfunctional p53. mTORC1 sits downstream of AMPK and other crucial tumor suppressors/oncogenes, PTEN, LKB1, and Akt. The antifolate pemetrexed was found by this laboratory to activate AMPK via the inhibition of the enzyme AICART in de novo purine synthesis. This work presents a mechanism of mTORC1 activation with p53 loss, as well as of mTORC1 inhibition by pemetrexed-induced AMPK. We have found that mTORC1 activity was substantially upregulated by the loss …


The Role Of Srsf3 In Control Of Alternative Splicing Of Cpeb2 In Triple Negative Breast Cancer, Brian P. Griffin Jan 2015

The Role Of Srsf3 In Control Of Alternative Splicing Of Cpeb2 In Triple Negative Breast Cancer, Brian P. Griffin

Theses and Dissertations

In the presented study, we identified that SRSF3 controls the alternative splicing of CPEB2 and consequently promotes a metastatic phenotype in triple negative breast cancer (TNBC). TNBC causes thousands of deaths annually, frequently due to a lack of effective treatments and a high rate of metastasis in patients. Alternative splicing has been found to be dysregulated in numerous cancers, while splicing factors such as SRSF3 are variably expressed. In this study we performed a siRNA panel to screen potential splicing factors, then used specific siRNA to study the effect of its knockdown on cellular function. These results showed that SRSF3 …


Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad Jan 2015

Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad

Theses and Dissertations

Glioblastoma multiforme (GBM) is the most common primary brain tumor. Studies have shown that targeting the DNA damage response can sensitize cancer cells to DNA damaging agents. Ataxia telangiectasia mutated (ATM) is involved in signaling DNA double strand breaks. Our group has previously shown that ATM inhibitors (ATMi) sensitize GBM cells and tumors to ionizing radiation. This effect is greater when the tumor suppressor p53 is mutated.

The goals of this work include validation of a new ATM inhibitor, AZ32, and elucidation of how ATMi and p53 status interact to promote cell death after radiation. We propose that ATMi and …


Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal Jan 2015

Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal

Theses and Dissertations

New drug discoveries and new approaches towards diagnosis and treatment have improved cancer therapeutics remarkably. One of the most influential and effective discoveries in the field of cancer therapeutics was antimetabolites, such as the antifolates. The interest in antifolates increased as some of the antifolates showed responses in cancers, such as mesothelioma, leukemia, and breast cancers. When pemetrexed (PTX) was discovered, our laboratory had established that the primary mechanism of action of pemetrexed is to inhibit thymidylate 22 synthase (TS) (E. Taylor et al., 1992). Preclinical studies have shown that PTX has a broad range of antitumor activity in human …


Nitric Oxide Synthase Activity And Its Modulation In The Treatment Of Colorectal Cancer, Asim Alam Jan 2015

Nitric Oxide Synthase Activity And Its Modulation In The Treatment Of Colorectal Cancer, Asim Alam

Theses and Dissertations

The American Cancer Society estimates more than 141,000 new cases of and about 50,000 deaths from colorectal cancer every year. Treatment options include surgery, radiation therapy and targeted therapies such as anti-angiogenics. However, no therapies address the key driving factor of colorectal cancer: inflammation. It is well known that chronic inflammatory conditions such as Crohn’s Disease, ulcerative colitis, diabetes, obesity and cigarette smoking all elevate the risk of developing colorectal cancer. One of the hallmarks of chronic inflammation is the elevated levels of reactive oxygen/nitrogen species (ROS/RNS). A primary source of these ROS/RNS is uncoupled Nitric Oxide Synthase (NOS). Under …