Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Molecular Biology

Characterization Of The Responses To Chronic Stress In Caenorhabditis Elegans, Amy Laura Knight Jul 2022

Characterization Of The Responses To Chronic Stress In Caenorhabditis Elegans, Amy Laura Knight

Theses and Dissertations

Exposure to chronic temperature stress influences organismal phenotypes that are important for human health, agriculture, and ecology. In this thesis, the model organism Caenorhabditis elegans was used to study the effects of temperature stress on reproduction and lifespan. It was found that worms demonstrated a rapid shut down in egg-laying between 18-24 hours of exposure to 28°C. Despite this reproductive defect, the overall lifespan of worms was unaffected. At the molecular level, heat shock factor 1 (HSF-1), a regulator of the protective molecular pathway known as the heat shock response (HSR), was identified as important for progeny production during heat …


Negative Regulation Of The Kinase Lin-45 By The E3/E4 Ubiquitin Ligase Ufd-2, Augustin Deniaud Aug 2021

Negative Regulation Of The Kinase Lin-45 By The E3/E4 Ubiquitin Ligase Ufd-2, Augustin Deniaud

Theses and Dissertations

The serine/threonine kinase BRAF is a key part of the Ras-Raf-MEK-ERK pathway, an inducer of cell growth, differentiation, and survival. In humans, activating mutations, most commonly BRAF(V600E), have been detected in several cancers, including melanoma and thyroid cancer. In the Caenorhabditis elegans ortholog LIN-45, the equivalent mutation LIN-45(V627E) results in elevated Raf-MEK-ERK signaling. We performed an unbiased genetic screen to identify negative regulators of LIN-45(V627E). Here, we report the identification of the E3/E4 ubiquitin ligase UFD-2, and show it is a negative regulator of LIN-45 protein activity and levels. Loss of UFD-2 leads to accumulation of wild-type LIN-45 protein as …


Divergent Regulatory Roles Of Nurd Chromatin Remodeling Complex Subunits Gatad2 And Chd4 In Caenorhabditis Elegans, Nicole Lynn Golden Jul 2021

Divergent Regulatory Roles Of Nurd Chromatin Remodeling Complex Subunits Gatad2 And Chd4 In Caenorhabditis Elegans, Nicole Lynn Golden

Theses and Dissertations

During stress, a protective cellular network known as the heat shock response (HSR) is induced to maintain protein-folding homeostasis, or proteostasis. While the HSR is essential for stress resistance, its misregulation is associated with neurodegenerative disease and cancer. Using the nematode model organism Caenorhabditis elegans, we have identified the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylase) as a novel regulator of the HSR. Here, we begin with a brief introduction of the HSR and chromatin remodeling complexes in C. elegans, prior to presenting our findings in a series of two chapters. In chapter one, we outline a set of …


Distinct Spatiotemporal Regulation Of The Cytoprotective Heat Shock Response In Caenorhabditis Elegans, Rosemary Nadine Plagens Jul 2021

Distinct Spatiotemporal Regulation Of The Cytoprotective Heat Shock Response In Caenorhabditis Elegans, Rosemary Nadine Plagens

Theses and Dissertations

Every organism studied to-date utilizes the heat shock response (HSR) to maintain protein-folding homeostasis (proteostasis) during temperature or other protein-folding stress. The HSR has been well characterized using acute heat stress (HS) in single-celled models, but less is known about how distinct cell types and tissues respond to HS. Furthermore, how metazoans respond to prolonged HS at the molecular level remains relatively unexplored. The model organism C. elegans, with its genetic tractability and distinct tissues and behaviors, has been used extensively in the field to characterize the acute HSR, but with considerable variability across labs regarding HS temperature and duration. …


Reducing Seed Coat Fiber Content And Pod Shatter, And Engineering Medium Chain Fatty Acids-Containing Oil, In The Oilseed Crop Pennycress ( Thlaspi Arvense L. ), Maliheh Esfahanian Mar 2021

Reducing Seed Coat Fiber Content And Pod Shatter, And Engineering Medium Chain Fatty Acids-Containing Oil, In The Oilseed Crop Pennycress ( Thlaspi Arvense L. ), Maliheh Esfahanian

Theses and Dissertations

The overall goal of this thesis was to genetically improve agronomic traits of pennycress (Thlaspi arvense L.; Field Pennycress) and demonstrate the production of value-added designer seed oils to domesticate pennycress and enable its establishment as a new winter annual oilseed/meal/cover crop to be grown in temperate regions of the world. In the U.S. Midwest, pennycress can be double cropped on existing farmland during the time between corn harvest and subsequent planting of soybeans the following spring. Pennycress has the potential to produce 2,000 lbs/acre seeds, which at 33% by weight oil content and 20% protein, would yield 85 gallons/acre …


A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv Jan 2021

A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv

Theses and Dissertations

Biomaterials for use in bone regeneration and healing range from metal and metal alloy implants to hydrogel-based solutions. These materials can be optimized to increase bone healing and integration by improving the mechanical and biological properties. Regardless of the material itself, the cell-substrate interaction is key to the success of the biomaterial once implanted. Substrate surface characteristics such as roughness, wettability, and particle density are well-known contributors to a substrate’s overall osteogenic potential, and therefore the substrate's overall success. Unfortunately, it is still unknown how these substrate surface characteristics are transduced into intracellular signals by cells, preventing specific tailoring of …


Gene Regulatory Mechanisms Driving Temporal Dynamics Of Lineage Specific Differentiation In The Cranial Neural Crest, Maria R. Replogle May 2020

Gene Regulatory Mechanisms Driving Temporal Dynamics Of Lineage Specific Differentiation In The Cranial Neural Crest, Maria R. Replogle

Theses and Dissertations

Genetic and environmental perturbations impacting neural crest (NC) development can result in pleiotropic structural and functional birth defects, many of which are associated with pediatric syndromes. As developmental precursors, the NC has the unique capacity to give rise to a diverse array of ectodermal and mesoectodermal cell types, from neurons and glia of the peripheral nervous system to the cartilage and bone of the face. In order to transition from a multipotent progenitor to a specific cell type, NC cells must undergo a series of dynamic morphological and behavioral transformations that gradually unfold over time. However, the NC is rare …


The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine Jan 2020

The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine

Theses and Dissertations

Patients with severe lung pathologies, such as Acute Respiratory Distress Syndrome (ARDS), often require mechanical ventilation as a clinical intervention; however, this procedure frequently exacerbates the original pulmonary issue and produces an exaggerated inflammatory response that potentially leads to sepsis, multisystem organ failure, and mortality. This acute lung injury (ALI) condition has been termed Ventilator-Induced Lung Injury (VILI). Alveolar overdistension, cyclic atelectasis, and biotrauma are the primary injury mechanisms in VILI that lead to the loss of alveolar barrier integrity and pulmonary inflammation. Stress and strains during mechanical ventilation are believed to initiate alveolar epithelial mechanotransduction signaling mechanisms that contribute …


Regulation Of The Microtubule Cytoskeleton And Cell Wall Development In Arabidopsis Thaliana, Christy J. Fornero Oct 2019

Regulation Of The Microtubule Cytoskeleton And Cell Wall Development In Arabidopsis Thaliana, Christy J. Fornero

Theses and Dissertations

Regulation of the cortical microtubule cytoskeleton is critical for organized plant cell division. Arabidopsis ton1 and ton2 mutants display random cell division plane placement and lack the plant-specific cortical microtubule array that encircles the nucleus prior to mitosis. In wild type plants, this preprophase band (PPB) of cortical microtubules precisely marks the future division plane. The specific roles of TON1 and TON2 in PPB formation are not yet known. It is suspected that TON1 Recruiting Motif (TRM) proteins may be involved in TON1 and TON2 recruitment to the PPB. Here we describe results for the targeted disruption of a group …


Lorelei Localization And Ovule Ultrastructure In Arabidopsis Thaliana, Juleen May Dickson Aug 2019

Lorelei Localization And Ovule Ultrastructure In Arabidopsis Thaliana, Juleen May Dickson

Theses and Dissertations

Communication between the male and female gametophyte is vital to successful fertilization during sexual reproduction in plants. One of the proteins known to be important for communication between the male and female gametophyte is LORELEI (LRE). Several studies have shown that there are defects in pollen tube guidance and synergid degeneration, however this is the first study that shows that cell wall thickness in the female gametophyte may also be affected. Previous confocal studies have documented that LRE is present both in the filiform apparatus and found in puncta throughout the cytoplasm. This study confirmed this, but our studies suggest …


Eralpha Isoforms Modulate The Tumorigenicity Of 24r,25(Oh)2d3 In Estrogen-Responsive Cancer, Anjali Verma Jan 2019

Eralpha Isoforms Modulate The Tumorigenicity Of 24r,25(Oh)2d3 In Estrogen-Responsive Cancer, Anjali Verma

Theses and Dissertations

Over 200,000 cases of breast cancer are diagnosed every year. Nearly 20% of these patients supplement their diets with some form of vitamin D. This high frequency of vitamin D supplement use may be due in part to research suggesting that cancer patients with higher serum vitamin D3 levels have better prognoses than patients with low serum vitamin D3. However, double-blind clinical trials on the efficacy of vitamin D3 supplementation in breast cancer have been inconclusive. A recent meta-analysis showed evidence of reduced cancer recurrence in patients taking vitamin D3 supplements who had ‘estrogen receptor positive’ …


Molecular And Functional Analysis Of The Pixb Gene In Xenorhabdus Nematophila, John Lucas Dec 2016

Molecular And Functional Analysis Of The Pixb Gene In Xenorhabdus Nematophila, John Lucas

Theses and Dissertations

Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae form a mutualistic relationship facilitating the infection, death and consumption of an insect host. The infective juvenile (IJ) form of S. carpocapsae invades the insect host through natural openings and proceeds to the hemocoel where exposure to hemolymph stimulates the release of X. nematophila from the anterior vesicle. Excreted X. nematophila releases immunosuppressive compounds and insect toxins into the insect hemolymph that facilitates death of the host. As X. nematophila reaches high cell density it secretes exoenzymes that degrade insect tissues and produces antibiotics that reduce microbial competition. S. carpocapsae utilizes the …


Biophysical Properties Of Cellular Membranes In Gram-Positive Bacterial Pathogens And Their Impact On Major Physiological Attributes And Virulence Determinants, Suranjana Sen Sep 2015

Biophysical Properties Of Cellular Membranes In Gram-Positive Bacterial Pathogens And Their Impact On Major Physiological Attributes And Virulence Determinants, Suranjana Sen

Theses and Dissertations

The cytoplasmic membrane of bacterial cells, forming an essential barrier from the surroundings, is a critical component of cellular physiology ensuring proper survival and maintenance of major cellular functions. The integrity of the membrane is an important feature that plays an essential role in the transport of solutes and nutrients through active and passive pathways, functions of membrane-associated proteins, electron transport and ATP synthesis, maintaining turgor pressure and combating environmental stresses, and thus is a crucial factor of a majority of cellular adaptations. The various biophysical properties affecting the integrity of this membrane are mainly determined by the composition and …


Cell Wall Mutants In Arabidopsis Thaliana, Christy Jane Moore Jun 2015

Cell Wall Mutants In Arabidopsis Thaliana, Christy Jane Moore

Theses and Dissertations

Plant cell walls are versatile structures, playing important roles in communication, defense, organization and support. The importance of each of these functions varies by cell type, with specialized cells often utilizing one or two functions more than others. Trichomes, or leaf hairs, and hypocotyl cells for instance, exhibit distinct cell wall characteristics. Trichomes have developed very thick cell walls with several raised structures, known as papillae, on their surfaces. It is believed that these cells function in defense against predators, making it difficult to crawl on the leaf surface, and in protection against ultra violet radiation, through refraction of light …


Role Of Non-Muscle Myosin Ii And Calcium In Zebrafish Midbrain-Hindbrain Boundary Morphogenesis, Srishti Upasana Sahu May 2015

Role Of Non-Muscle Myosin Ii And Calcium In Zebrafish Midbrain-Hindbrain Boundary Morphogenesis, Srishti Upasana Sahu

Theses and Dissertations

Elucidating the molecular mechanisms that play a role in cellular morphogenesis is critical to our understanding of brain development and function. The midbrain-hindbrain boundary (MHB) is one of the first folds in the vertebrate embryonic brain and is highly conserved across species. We used the zebrafish MHB as a model for determining the molecular mechanisms that regulate these cell shape changes. Cellular morphogenesis is tightly regulated by signaling pathways that rearrange the cytoskeleton and produce mechanical forces that enable changes in cell and tissue morphology. The generation of force within a cell often depends on motor proteins, particularly non-muscle myosins …


Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad Jan 2015

Interaction Between Atm Kinase And P53 In Determining Glioma Radiosensitivity, Syed F. Ahmad

Theses and Dissertations

Glioblastoma multiforme (GBM) is the most common primary brain tumor. Studies have shown that targeting the DNA damage response can sensitize cancer cells to DNA damaging agents. Ataxia telangiectasia mutated (ATM) is involved in signaling DNA double strand breaks. Our group has previously shown that ATM inhibitors (ATMi) sensitize GBM cells and tumors to ionizing radiation. This effect is greater when the tumor suppressor p53 is mutated.

The goals of this work include validation of a new ATM inhibitor, AZ32, and elucidation of how ATMi and p53 status interact to promote cell death after radiation. We propose that ATMi and …


Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal Jan 2015

Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal

Theses and Dissertations

New drug discoveries and new approaches towards diagnosis and treatment have improved cancer therapeutics remarkably. One of the most influential and effective discoveries in the field of cancer therapeutics was antimetabolites, such as the antifolates. The interest in antifolates increased as some of the antifolates showed responses in cancers, such as mesothelioma, leukemia, and breast cancers. When pemetrexed (PTX) was discovered, our laboratory had established that the primary mechanism of action of pemetrexed is to inhibit thymidylate 22 synthase (TS) (E. Taylor et al., 1992). Preclinical studies have shown that PTX has a broad range of antitumor activity in human …


Development Of Peripheral Innervation In The Frog Xenopus Laevis, Mitali A. Gandhi Aug 2014

Development Of Peripheral Innervation In The Frog Xenopus Laevis, Mitali A. Gandhi

Theses and Dissertations

The skin in Xenopus laevis is innervated by two different sets of mechanosensory neurons at different times during development. Rohon Beard (RB) neurons start differentiating during gastrulation, innervate the embryonic skin and mediate sensory function during hatching. Dorsal Root Ganglion (DRG) neurons start differentiating after neural crest migration, innervate adult epidermal targets and mediate mechanosensory function during larval and adult stages and eventually replace RB neurons. The change in sensory neurons occurs during the transformation of skin, sensory structures, and behavior from their embryonic to their larval forms. We hypothesized that developmental changes in either the sensory end organs or …