Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Publicly Accessible Penn Dissertations

2016

Epigenetics

Genetics

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

The Mitotic Genome: Accessibility And Transcriptional Control, Chris Hsiung Jan 2016

The Mitotic Genome: Accessibility And Transcriptional Control, Chris Hsiung

Publicly Accessible Penn Dissertations

Mitosis entails dramatic global alterations to genome structure and regulation, including

chromosome condensation, dissociation of the transcriptional machinery from chromosomes, and transcriptional silencing. Here I report studies that address the macromolecular accessibility of the mitotic genome and the control of transcriptional reactivation upon mitotic exit in a mammalian cell line. The results obtained from measuring the sensitivity of chromatin to DNase I cleavage by sequencing (DNase-seq) in pure mitotic cell populations demonstrate that macromolecular accessibility of the mitotic genome is widely preserved. Thus, steric hindrance from chromatin condensation is insufficient for explaining the eviction of transcription factors from mitotic chromatin ...


Epigenetic Regulation Of The Dlk1-Meg3 Imprinted Locus In Human Islets, Vasumathi Kameswaran Jan 2016

Epigenetic Regulation Of The Dlk1-Meg3 Imprinted Locus In Human Islets, Vasumathi Kameswaran

Publicly Accessible Penn Dissertations

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by inadequate insulin secretion by the pancreatic β-cell in response to increased blood glucose levels. Despite compelling evidence that T2DM has a high rate of familial aggregation, known genetic risk variants account for less than 10% of the observed heritability. Consequently, post-transcriptional regulators of gene expression, including microRNAs and other noncoding RNAs, have been implicated in the etiology of T2DM, in part due to their ability to simultaneously regulate the expression of hundreds of targets.

To determine if microRNAs are involved in the pathogenesis of human T2DM, I sequenced ...


Linking Acetyl-Coa Metabolism And Histone Acetylation To Dynamic Gene Regulation In Yeast And Mouse Hippocampus, Philipp Mews Jan 2016

Linking Acetyl-Coa Metabolism And Histone Acetylation To Dynamic Gene Regulation In Yeast And Mouse Hippocampus, Philipp Mews

Publicly Accessible Penn Dissertations

A compelling body of evidence suggests an intimate relationship between metabolic state and chromatin regulation. This link is manifested in key metabolites that participate in biochemical pathways as intermediates, and function as cofactors to regulate chromatin modifying enzymes. Of particular interest is the metabolite acetyl-CoA, given its central role as an intermediate of cellular energy metabolism and key determinant of all histone acetylation. How nuclear acetyl-CoA levels are regulated to, in turn, control histone acetylation is under intense investigation, and holds promise for increased understanding of the molecular mechanisms adapting gene expression to internal and external stimuli. We studied the ...