Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo Aug 2021

The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo

Electronic Thesis and Dissertation Repository

Pannexins (PANX1, 2, 3) are a family of channel-forming glycoproteins that mediate intracellular and paracrine signaling. In contrast to PANX2, PANX1 has been extensively investigated in the skin, modulating cell differentiation, wound healing, and melanoma development. PANX1 and PANX2 can co-exist in the same cell and form mixed channels where their glycosylation seems to regulate their intermixing. N-glycosylation and caspase cleavage have been proposed as modulators of the function of PANX1, but their effects on PANX2 are unknown. We explored the PANX2 expression in mouse skin and showed that a Panx2 splice variant (PANX2-202) is continuously expressed throughout aging skin. …


Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf Jun 2021

Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf

Electronic Thesis and Dissertation Repository

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of a pluripotency continuum, respectively referred to as naïve and primed pluripotent states. A third, recently discovered intermediate state has been described as the ‘formative state’. Metabolism has been traditionally regarded as a by-product of cell fate; however, recent evidence now supports metabolism as promoting stem cell fate. Pyruvate kinase muscle isoforms 1 and 2 (PKM1 and PKM2) catalyze the final, rate limiting step of glycolysis generating adenosine triphosphate (ATP) and pyruvate; however, the precise role(s) of these isozymes in naïve, formative, and primed pluripotency is …


A Workflow To Analyze Ethcd Mass Spectrometry Data For Studying Hiv Gp120 Glycosylation, Yingxue Sun Mar 2021

A Workflow To Analyze Ethcd Mass Spectrometry Data For Studying Hiv Gp120 Glycosylation, Yingxue Sun

Electronic Thesis and Dissertation Repository

The great heterogeneity of HIV populations and richness of surface glycan clouds makes it difficult to locate a conserved and exposed protein epitope as an effective vaccine target. However, more than 80% new infections result from single transmitted founder (T/F) viruses. We set out to design a workflow to study the traits of T/Fs that allow for their superior infectivity, specifically, the glycosylation patterns of gp120, a subunit of HIV envelope protein responsible for binding to host cell receptors. Our main research methods include Western blot and mass spectrometry. Our current understanding of the mass spectrometry data indicates that our …


Characterization And Discovery Of Short Linear Motifs Mediating Protein Nuclear Import, Tanner M. Tessier Mar 2021

Characterization And Discovery Of Short Linear Motifs Mediating Protein Nuclear Import, Tanner M. Tessier

Electronic Thesis and Dissertation Repository

Protein-protein interactions (PPI) mediated through short linear motifs (SLiMs) are ubiquitous throughout the human proteome and are involved in many essential cellular processes. One such type of SLiM is the classical nuclear localization sequence (cNLS), which facilitates nuclear import by binding importin-α (Imp-α). This pathway is indispensable to many cellular processes and is extensively used by viral proteins that function within the nucleus of infected cells. Based on this, I demonstrated that the classical nuclear import pathway inhibitor, ivermectin, can inhibit replication of human adenovirus. Treatment with ivermectin blocks nuclear localization of the E1A protein, an essential viral nuclear protein …


Implications And Applications Of Transfer Rna Variants That Mistranslate The Genetic Code, Matthew D. Berg Jan 2021

Implications And Applications Of Transfer Rna Variants That Mistranslate The Genetic Code, Matthew D. Berg

Electronic Thesis and Dissertation Repository

Genetic information is passed from DNA to RNA to protein through the processes of transcription and translation. Transfer RNAs (tRNA) are the adaptors that bring amino acids to the growing polypeptide chain during translation and decode the three base codons that define protein sequence. Mistranslation occurs when an amino acid different from what is specified by the genetic code is inserted into a protein. tRNA variants cause mistranslation by decreasing the accuracy of amino acid charging or by altering decoding at the ribosome. My goal was to characterize mistranslating tRNA variants, identify their effects on cells and determine mechanisms used …