Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Molecular Biology

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom Jan 2015

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom

Celia A. Schiffer

The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. …


Crystal Structures Of Human Ctbp In Complex With Substrate Mtob Reveal Active Site Features Useful For Inhibitor Design, Brendan Hilbert, Steven Grossman, Celia Schiffer, William Royer Jan 2015

Crystal Structures Of Human Ctbp In Complex With Substrate Mtob Reveal Active Site Features Useful For Inhibitor Design, Brendan Hilbert, Steven Grossman, Celia Schiffer, William Royer

Celia A. Schiffer

The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory d-isomer specific 2-hydroxyacid dehydrogenase (d2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD(+) revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD(+) phosphate. Neither feature is present in other d2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. Elsevier B.V. All …


Interview With Celia Schiffer, Celia Schiffer Jan 2015

Interview With Celia Schiffer, Celia Schiffer

Celia A. Schiffer

Celia Schiffer, a Professor in Biochemistry and Molecular Pharmacology; a former Director of UMass Center for AIDS Research; and a Founder and Co-Director for the Institute for Drug Resistance (University of Massachusetts Medical School, MA, USA). Schiffer has an undergraduate degree in physics from the University of Chicago, with a PhD in biophysics from University of California, San Francisco (CA, USA). She was a postdoctoral associate first at the ETH in Zurich and then at Genentech in San Francisco. Schiffer has published more than 100 peer reviewed journal articles. Her laboratory primarily uses structural biology, biophysical and chemistry techniques to …


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against …


Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer Oct 2012

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical for rational drug design. Computational methods can provide more details about inhibitor-protease binding than crystallography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This information can contribute to the rational design of new HIV-1 protease inhibitors.


Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer Nov 2011

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate …


Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer Nov 2011

Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type …