Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Beta-Lysine Discrimination By Lysyl-Trna Synthetase, Marla S. Gilreath, Hervé Roy, Tammy J. Bullwinkle, Assaf Katz, Michael Ibba, William Wiley Navarre Sep 2011

Beta-Lysine Discrimination By Lysyl-Trna Synthetase, Marla S. Gilreath, Hervé Roy, Tammy J. Bullwinkle, Assaf Katz, Michael Ibba, William Wiley Navarre

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P is modified with (R)‐β‐lysine by the lysyl‐tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate α‐ and β‐lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site guided by the PoxA structure. A233S LysRS behaved as wild type with α‐lysine, while the G469A and A233S/G469A variants decreased stable α‐lysyl‐adenylate formation. A233S LysRS recognized β‐lysine better than wildtype, suggesting a role for this residue in discriminating α‐ and β‐amino acids. Both enantiomers of β‐lysine were substrates for tRNA aminoacylation by LysRS, which, together with …


The Trna Synthetase Paralog Poxa Modifies Elongation Factor-P With (R)-Β-Lysine, Hervé Roy, S. Betty Zou, Tammy J. Bullwinkle, Benjamin S. Wolfe, Marla S. Gilreath, Craig J. Forsyth, William Wiley Navarre, Michael Ibba Aug 2011

The Trna Synthetase Paralog Poxa Modifies Elongation Factor-P With (R)-Β-Lysine, Hervé Roy, S. Betty Zou, Tammy J. Bullwinkle, Benjamin S. Wolfe, Marla S. Gilreath, Craig J. Forsyth, William Wiley Navarre, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts containing non–α-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of β-lysine, a substrate also predicted by genomic analyses. EF-P was efficiently functionally modified with (R)-β-lysine but not (S)-β-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.


Quantifying Agonist Activity At G Protein-Coupled Receptors, Frederick J. Ehlert, Hinako Suga, Michael T. Griffin Jan 2011

Quantifying Agonist Activity At G Protein-Coupled Receptors, Frederick J. Ehlert, Hinako Suga, Michael T. Griffin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors.

Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence …